

Session 2.3

Castle in the Sky: Creating and sharing new knowledge and supporting education on equitable access to ecosystem services

Chair: Wendy Chen

Accessible Urban Forestry Education

Introducing the FAO e-Learning 'Introduction to Urban and Peri-Urban Forestry'

Lotte Dijkstra

Newsgatle University | Studie Places arning Academy | SISEF | MD2 | EFI |
EFUF

Co-authors

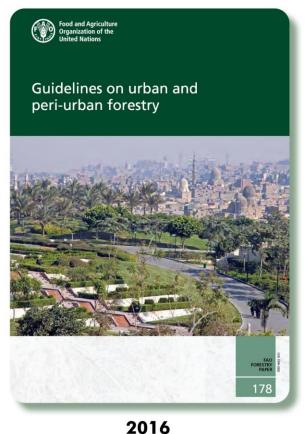
Clive Davies Newcastle University | MD2 | EFI | EFUF

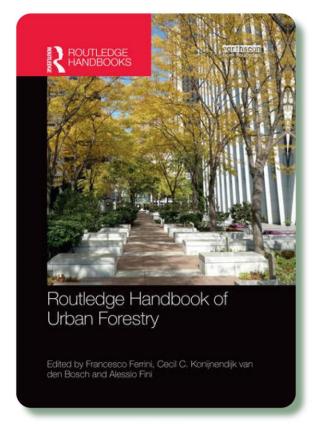
Lotte Dijkstra Newcastle University | Studio PLACES


Simone Borelli FAO

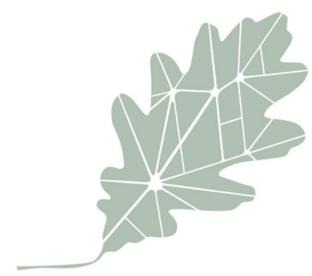
Fabio Salbitano University of Sassari | SISEF

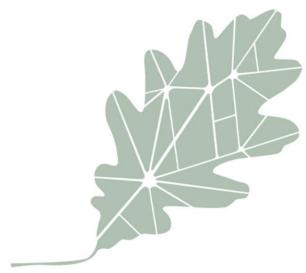
Michela Conigliaro FAO

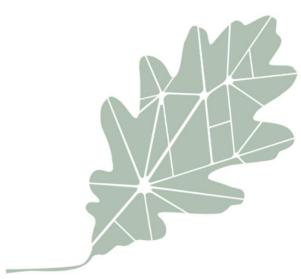

Cleona Wallace FAO eLearning Academy

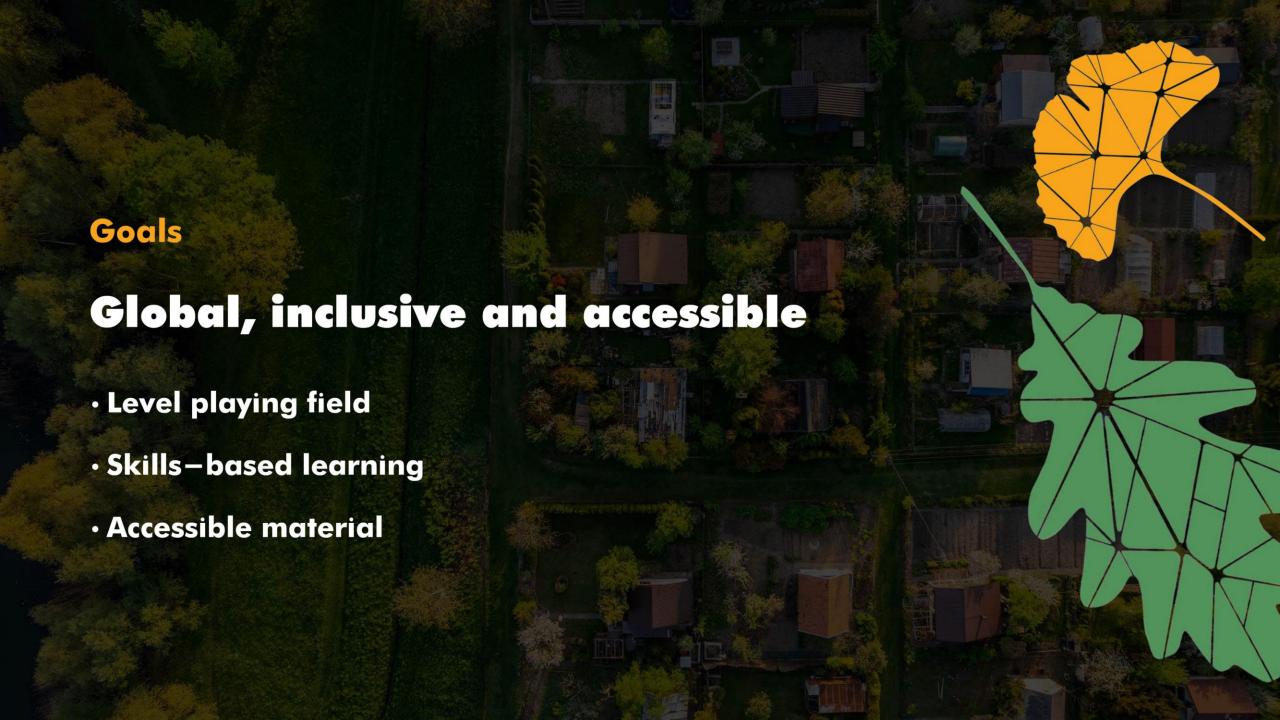


Body of knowledge




• What are the challenges for urban forestry?


- What are the challenges for urban forestry?
- · Who should participate in the planning, design and management?



- What are the challenges for urban forestry?
- · Who should participate in the planning, design and management?
- What are the benefits?

- What are the challenges for urban forestry?
- Who should participate in the planning, design and management?
- What are the benefits?
- What is urban forestry?

Level playing field

- Vast array of disciplines and professional backgrounds
- Personal background
- · Global context
- Local reality

Introduction to Urban and Peri-Urban Forestry

Who should take this course?

This course is primarily intended for **individuals responsible for planning, designing, or managing urban forests**, including those working in **public or private organizations** and those in the **voluntary sector**. This may include:

Click on each person to learn about their interest in this course

Policymakers

Planners, researchers and practitioners

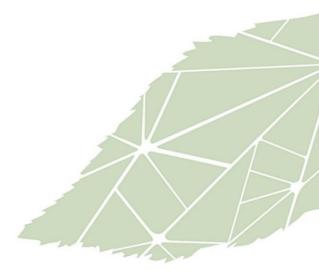
Development organizations and voluntary sector

Landowners and trusts

I work for a trust, which manages areas of urban land which include many trees. I would like to better understand how our work can contribute to a coherent urban forest strategy in our city, and that we can play a role as stakeholders in the process.

Skills-based learning

- Introduction to urban forestry
- Directly applicable and practical skills
- · Focus on what, how, why
- Invitation for further exploration



Accessible material

Content:

- Learner backgrounds
- Learning styles
- Global representation

Accessible material

Content:

- Learner backgrounds
- Learning styles
- Global representation

Infrastructure:

- Free of charge
- Sensitive to available time
- Access to internet
- Open access resources

Clive Davies
Newcastle University |
MD2 | EFI | EFUF

Lotte Dijkstra Newcastle University | Studio PLACES

Clive Davies
Newcastle University |
MD2 | EFI | EFUF

Lotte Dijkstra Newcastle University | Studio PLACES

Advisory team

Simone Borelli

Michela Conigliaro

Fabio Salbitano University of Sassari | SISEF

Cristina Petracchi FAO eLearning Academy

Clive Davies
Newcastle University |
MD2 | EFI | EFUF

Lotte Dijkstra Newcastle University | Studio PLACES

Advisory team

Simone Borelli FAO

Michela Conigliaro

Fabio Salbitano University of Sassari | SISEF

Cristina Petracchi FAO eLearning Academy

Peer review

Cynnamon Dobbs University of Connecticut

C.Y. JimEducation University of Hong Kong [EdUHK]

Thomas B. Randrup
Swedish University of
Agricultural Sciences

Clive Davies
Newcastle University |
MD2 | EFI | EFUF

Lotte Dijkstra Newcastle University | Studio PLACES

Storyboards

Cleona Wallace FAO eLearning Academy

Advisory team

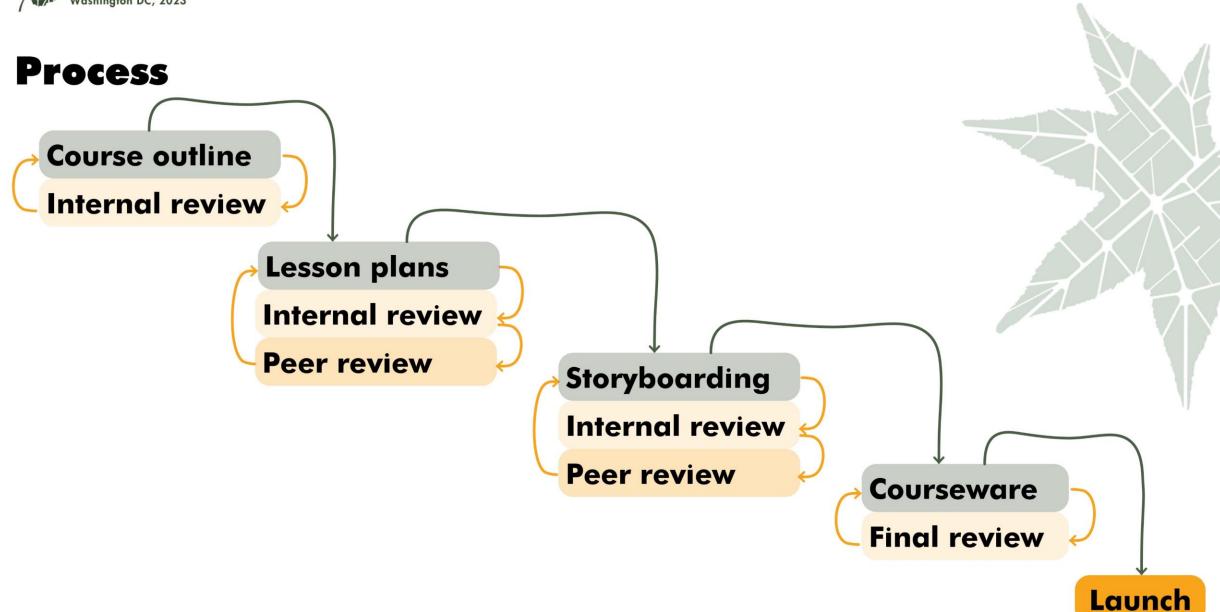
Simone Borelli

Michela Conigliaro

Fabio Salbitano University of Sassari | SISEF

Cristina Petracchi FAO eLearning Academy

Peer review

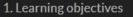

Cynnamon DobbsUniversity of Connecticut

C.Y. Jim
Education University of
Hong Kong [EdUHK]

Thomas B. Randrup Swedish University of Agricultural Sciences

Welcome to this course on Urban Forestry

This e-learning course aims to provide an **introductory** and **elementary understanding** of **urban** and **peri-urban forestry** concepts. It focuses on issues around definitions and introduces ideas around the planning, design and management of urban and peri-urban forests.



MENU GLOSSARY RESOURCES

Q

■ Introduction to Urban and Peri-Urban Forestry

EXIT

- 2. Introduction
- 3. What is urban forestry?
- 4. Benefits of urban forests
- 5. Five types of urban forest
- 6. Test your knowledge
- 10. Planning, design and management of urban forests
- 7. The relationship between urban and peri-urban forests
- 9. Are inner forests recognizably forested areas?
- 10. Differences between urban and faraway forests

11. Test your knowledge

An introduction to Urban and Peri-Urban Forestry

Introduction and basic concepts

Welcome to Lesson 1.

This lesson provides an overview of urban forestry and the importance of urban forests for sustainability.

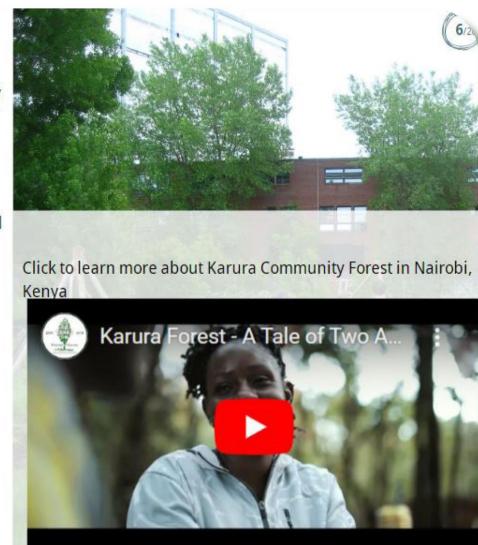
It provides a foundation, with key urban forestry concepts, and describes the relationship between urban forests and peri-urban forests adjacent to the city.

30 minutes

Next >

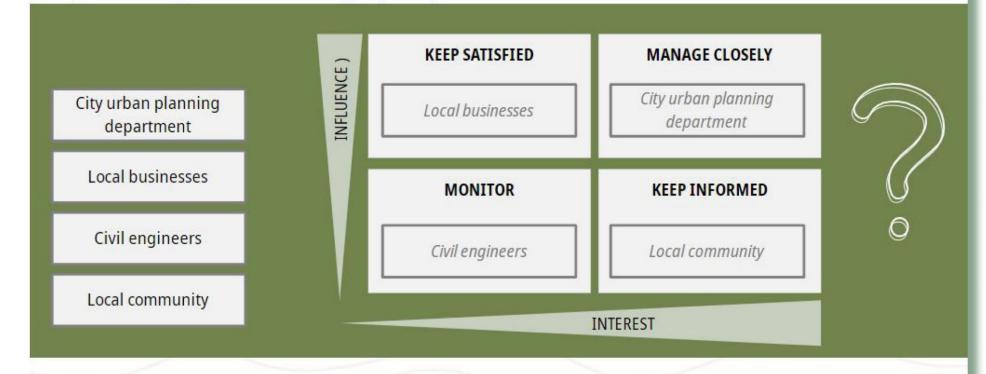
At the end of this lesson, you will be able to:

- · define urban forestry;
- explain key terms and concepts associated with urban forestry;
- describe the process of planning, designing and managing urban forests;
- explain the relationship between urban forests and forests outside of urban contexts; and
- describe the contribution of urban forests to the UN Sustainable Development Goals (SDGs).



If urban forests are imposed on communities, they are likely to lead to negative feelings. The appreciation of trees in and around urban areas is highly dependent upon their acceptability to local communities, and working with communities at all stages increases the likelihood of success.

Enabling individuals to develop a **sense of ownership** of local trees improves the chances of reaching tree maturity and engaging people in the trees' protection and day-to-day maintenance.

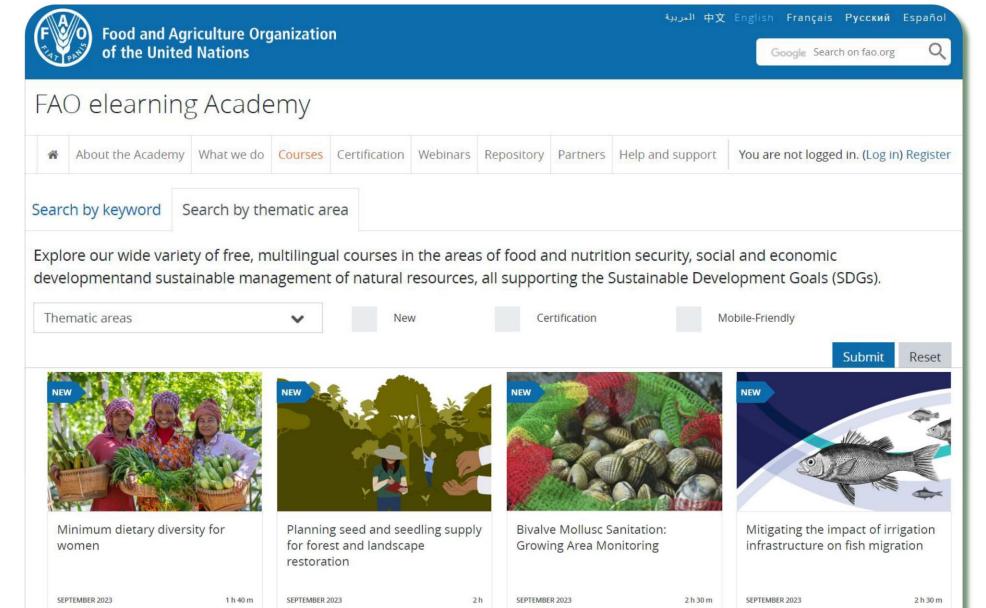


24/26

Imagine you are working on redeveloping an existing community park.
Assign the following stakeholders to the appropriate quadrant:

Please select the answer(s) of your choice and click on Check answer

Check answer



elearning.fao.org

Invite your local...

- Policymakers
- Government officials
- Development organizations
- Volunteers
- Not-for-profit organizations
- Planners
- Researchers
- Practitioners
- Landowners
- Trusts
- ••••••

Dissemination kit:

- Invitation letter
- Abstract for each lesson
- Direct link to course

Reach out to:

C.M.Dijkstra2@newcastle.ac.uk

Thank you

Lotte Dijkstra | Newcastle University | Studio PLACES

- C.M.Dijkstra2@newcastle.ac.uk
- © @studio.places
- @studio_places

2nd World Forum on Urban Forests 2023

Parallel Sessions - Anacostia D/E: Session 2.3:

Castle in the Sky: Creating and sharing new knowledge and supporting education on equitable access to ecosystem services. Chair: Wendy Chen

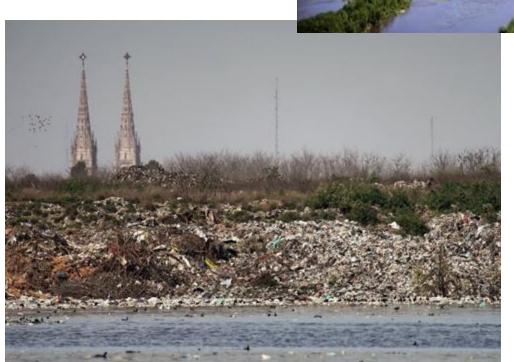
LOCAL GOVERNANCE MODELS ABOUT COMMUNITY PARTICIPATION IN BUENOS AIRES, ARGENTINA

Presented by

Dra. Ing. Elena B. Craig

Ing. Analía Scarselletta

Dra. Clara Minaverry


Lic. Macarena Pocaressi

Understanding our workspaces

Environmental and Social Vulnerability

Our experience in urban forest

Paint: Blue Forest

Regional Agreement on Access to Information, Public Participation and Justice in Environmental Matters in Latin America and the Caribbean

- To access to environmental information
- To participate about environmental decision
 - To access to environmental justice
 - To protect environmental defenders

Legally, local governments are responsible for developing and overseeing the urban forest plan. However, these regulations were enacted without taking in consideration the participation of the community.

	Luján			Bahía Blanca					
	Ord. 176	Ord. 5.997	Ord. 4.294	Ord. 14.577	Ord. 14.966	Ord. 15.523	Ord. 16.190	Ord. 18.371	Ord. 19.318
1.	Х		Х	Х	Х	Х	Х	Х	X
2.									
3.				Х		Х	Х		
4.						Χ		Χ	
5.									
6.			X			Х			X

	Ituzaingó		Mercedes				
	Ord. 2.013	Ord. 7.792	Ord. 8.120	Ord. 8.256	Ord. 8.260		
1.	Х	х	Х	Х	х		
2.							
3.	х	Х	Х	X			
4.	Х		Х	Х			
5.							
6.	х	х	х	Х			

- 1- PRESERVATION, CONSERVATION, RECOVERY
- AND IMPROVEMENT MECHANISMS
- 2- SOCIAL PARTICIPATION
- 3- BIODIVERSITY CONSERVATION
- 4-ENVIRONMENTAL EDUCATION
- 5- FREE ACCESS TO INFORMATION
- 6- MINIMAL PLANE RISKS

de minimización de riesgos. Elaboración propia, 2020.

Environmental Protection mechanisms detected in Local Ordinances

NOV. 2022- LUJÁN

Scarselletta, A.; Minaverry, C.;
Pocaressi, M; López, M. y Cucciufo,
E. (2021) MECANISMOS LEGALES
PARA LA PROTECCIÓN
AMBIENTAL DE LOS BOSQUES
URBANOS EN CUATRO
MUNICIPIOS DE LA PROVINCIA DE
BUENOS AIRES, en Papeles del
Centro de Investigaciones, Facultad
de Ciencias Jurídicas y Sociales,

a new municipal ordinance was enacted that considers an instance of social participation in decision-making

Ord. 7875/22
PUBLIC TREE COUNCIL

UNL, publiSOCIAL PARTICIPATION MECHANISMS

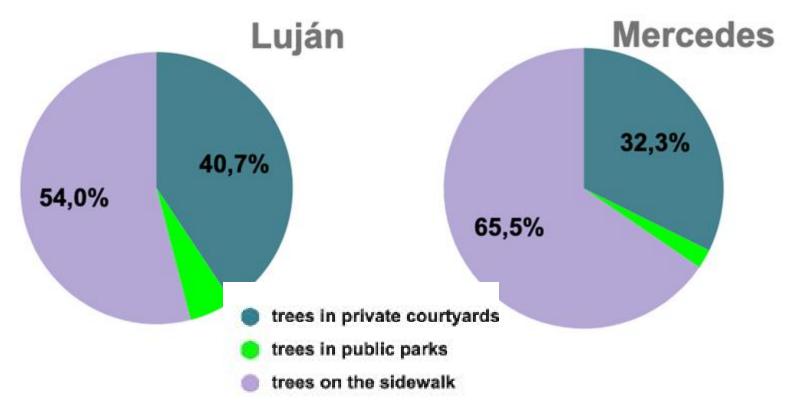
número 22, Santa Fe, República

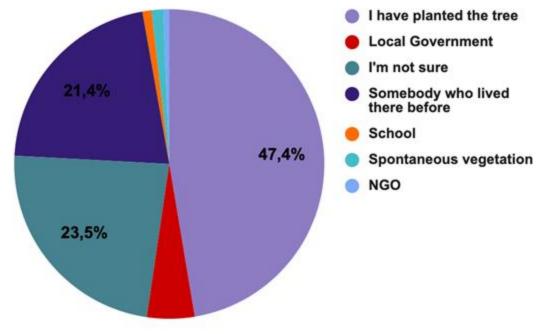
Argentin ENVIRONMENTAL EDUCATION MECHANISMS

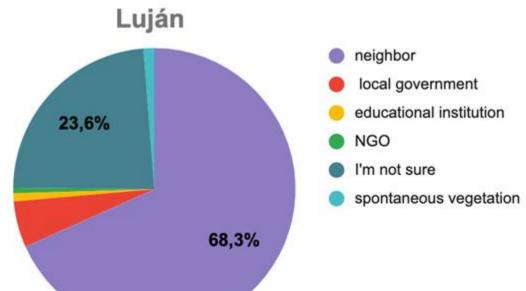
Exploring the role of Local Communities in Urban Governance

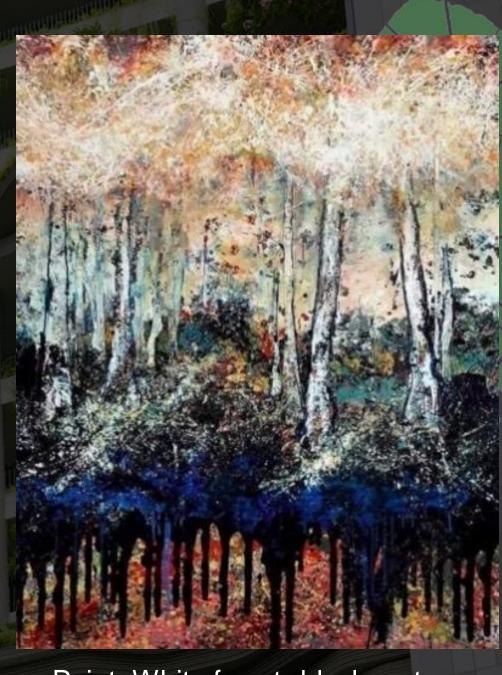
20 SPECIALIST INTERVIEWS

790 COMMUNITY
SURVEY

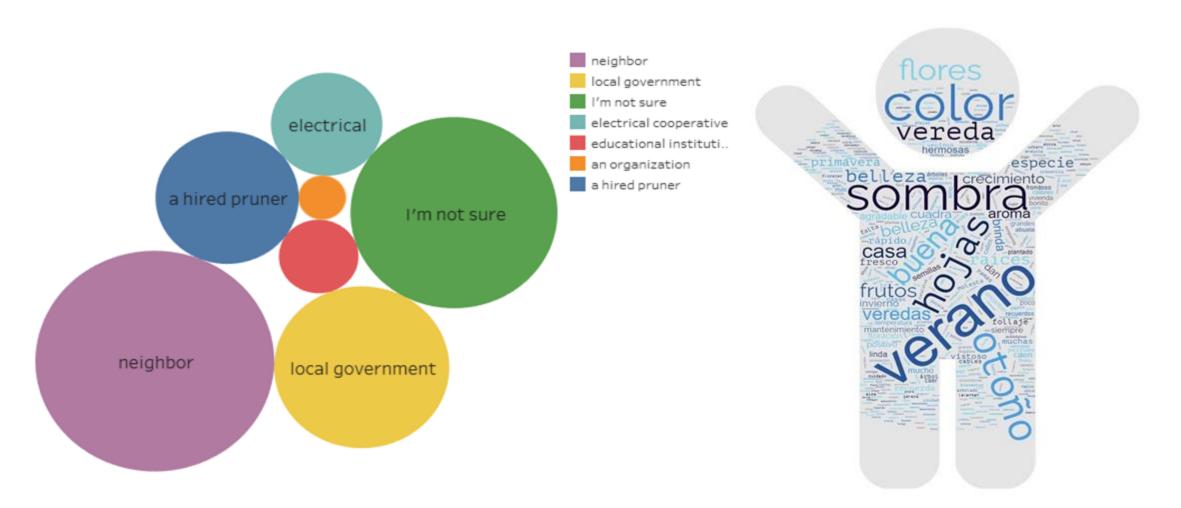





Identifying the Tree that holds the closest connection to you

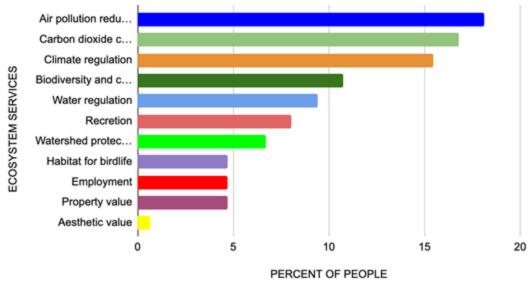


Neighbors perceptions about ecosystem services


Of the bare forests
Juan Carlos Brambiya

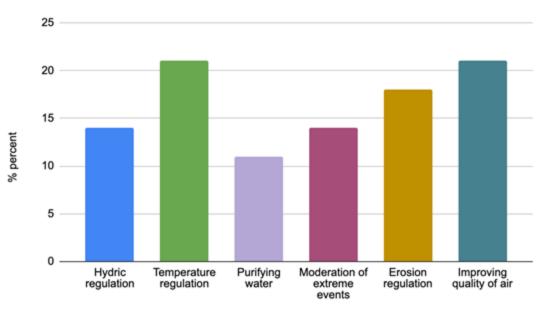
Paint: White forest, black root

Who plays a role of taking care for trees, and what aspects do local community value about them?



Approach about local perception of ecosystem

ECOSYSTEM SERVICES IN BOGOTA


Scarselletta A.; Craig, E. REGULATORY ADVANCES AND SOCIAL PERCEPTION OF THE ECOSYSTEM SERVICES PROVIDED BY URBAN FORESTS IN THE MUNICIPALITY OF LUJAN, PROVINCE OF BUENOS AIRES, ARGENTINA.2021. Ecosystem and Cultural Services: Environmental, Legal and Social Perspectives in Argentina. Springer. Eds. Sebastián Valverde y Clara María Minaverry.

Interviews with urban forest specialists

Regulation Ecosystem services

Fig. X.5: Average score for each of the regulation or sustainability services offered by urban forests. (1 means "It does not contribute to the service" and 5 means "It successfully contributes to the service"). Key informants' responses; surveys conducted during 2019. Compiled by the authors

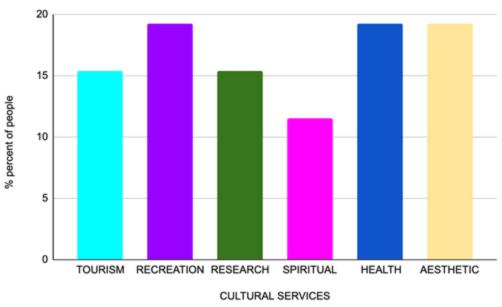
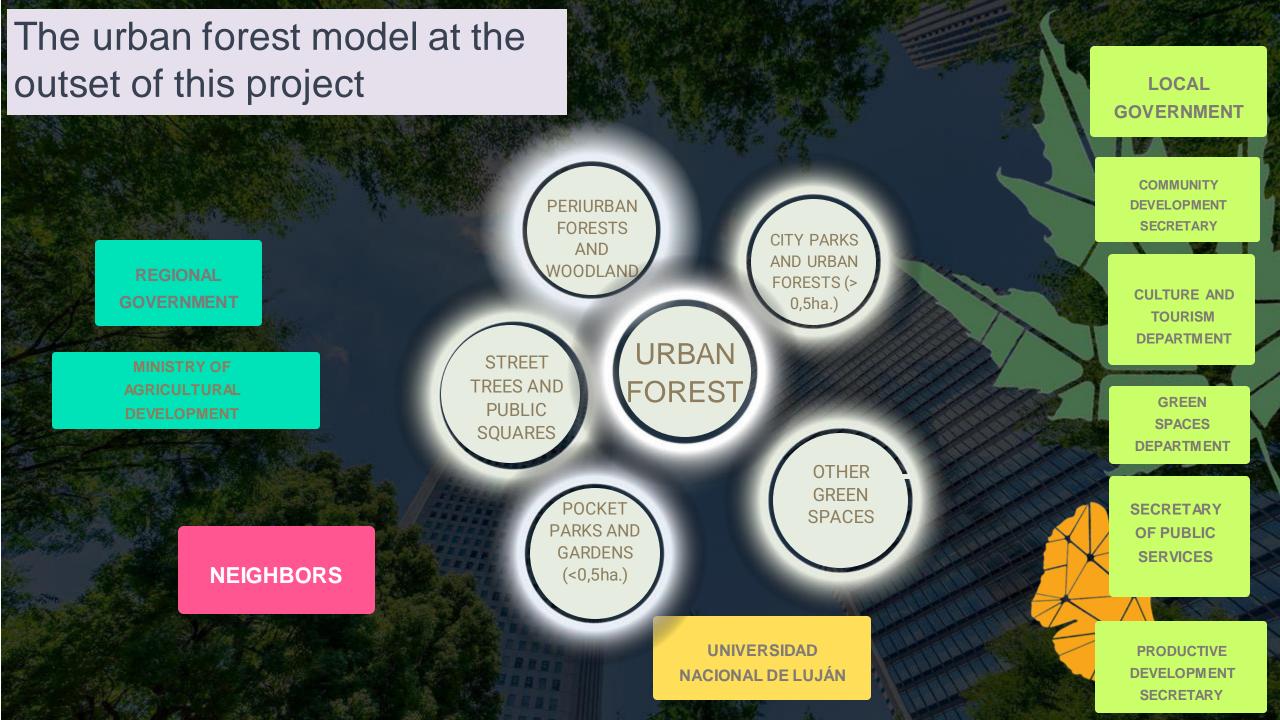



Fig. X.6:Average score for each of the cultural services offered by urban forests. (1means "It does not contribute to the service" and 5 "It successfully contributes to the service"). Key informants' responses; surveys conducted during 2019. Compiled by the author

PRIVATE SECTOR **PUBLIC SERVICES CULTURE AND** REAL ESTATE **ENVIRONMENTAL** SECRETARY **NGO FRIENDS** TOURISM **GREEN BROKERS URBAN COUNCIL** OF THE **DEPARTMENT** INFRASTRUCTURE LOCAL **DOWNTOWN DEPARTMENT GOVERMENT** SQUARE **TIMBER PRODUCERS** PRODUCTIVE DEVELOPMENT NG0 S.O.S **SECRETARY** HÁBITAT **CITY PARKS PERIURBAN NEIGHBORS AND URBAN NEIGHBORS FORESTS** FORESTS (> **FARMING PRODUCERS** AND 0,5ha.) WOODLAND NGO FLOODED FROM REAL ESTATE LUJAN URBAN TREES ON **BROKERS** STREET OR **FOREST PUBLIC CULTURE AND TOURISM SQUARES ELECTRICAL** DEPARTMENT COOPERATIVE **OTHER GREEN SPACES** PRODUCTIVE **POCKET** UNIVERSIDAD NACIONAL **DEVELOPMENT** DE LUJÁN PARKS AND SECRETARY **GARDENS** HIRED BY (<0,5ha.) COMMUNITY MUNICIPAL **DEVELOPMENT GOVERMENT SECRETARY** HIRED PRUNER HIRED BY **ENVIRONMENTAL PUBLIC SERVICES DEPARTMENT URBAN COUNCIL NEIGHBORS NEIGHBORS** HIRED PRUNER **NEIGHBORS**

CONCLUSION

Multi-criteria compensation mechanisms

Environmental education and professionalization of the sector

Improve the Mechanisms of participation and articulation between the actors involved

Greater local government involvement in Urban forest management with emphasis on sidewalk trees

Enhancing interdepartmental and intergovernmental communication

To examine the organizational charts of other government agencies

Ensure compliance with the law

Thank you

Dra. Elena B. Craig Universidad Nacional de Luján

dearbolesurbanos@gmail.com

Paint: "From forest". Lujan painter: Juan Carlos Brambilla

https://brambiya.mitiendanube.com/productos

2nd World Forum on Urban Forests 2023

i-Tree 2023 More science and easier to use

Presented by

Jason Henning PhD

The Davey Institute

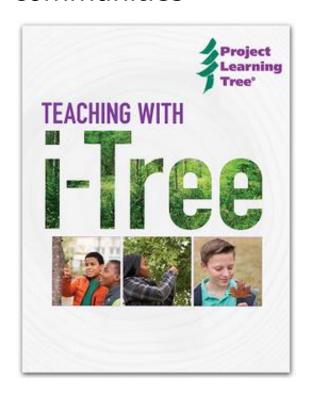
i-Tree 2023

www.itreetools.org


- Advancing and sharing the science of tree benefits since 2006
- A collection of free tools for estimating the benefits of trees
- Science based and continually updated
- Dedicated outreach and free technical support

Core individual tree tools

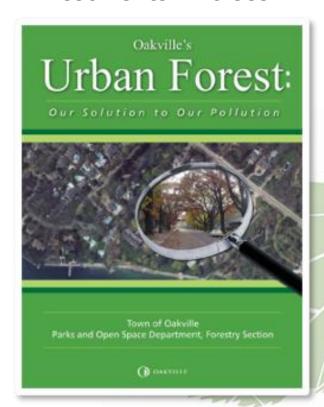
Core canopy tools


"Putting US Forest Service urban forest science into the hands of users"

Ways to use i-Tree

Education

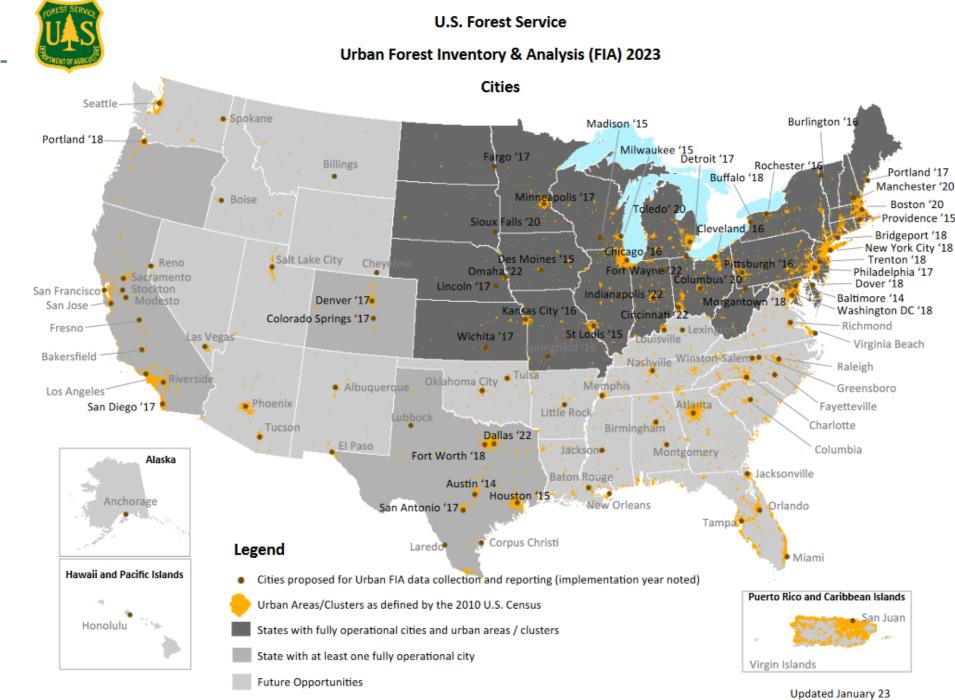
- Connect students with trees
- Teach public about tree benefits
- Create engaged communities



Advocacy

- Show policy makers the benefits of trees
- Create policy focused on maximizing tree benefits
- Convince doubtful audiences

Strategic Management


- Decide where to plant trees
- Support care, maintenance, and protection of trees
- Monitor and optimize investments in trees

Urban Forest Inventory & Analysis (FIA)

The Nation's Urban Forest Inventory

Springfield '16 initial cycle only, no remeasurement planned

Key features of integration with FIA

- Use of i-Tree field methods and models
- High quality urban specific data to support new science
- Collaboration with FIA researchers
 - –Urban Specific crown width equations
 - -New biomass equations
 - -Validation and testing

Urban Ecosystems (2020) 23:905–917 https://doi.org/10.1007/s11252-020-00988-2

Check for updates

Crown width models for woody plant species growing in urban areas of the U.S.

James A. Westfall ¹ · David J. Nowak ² · Jason G. Henning ³ · Tonya W. Lister ¹ · Christopher B. Edgar ⁴ · Mark A. Majewsky ⁵ · Nancy F. Sonti ⁶

Published online: 19 March 2020

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020

Abstract

Crown widths of woody plant species growing in urban areas are of considerable importance as an overall indicator of health and also serve as an important factor for assessing leaf area and associated ecosystem services, such as carbon sequestration, air pollution removal, air temperature cooling, and rainfall interception. Unfortunately, assessing crown widths in urban environments is often challenging and time consuming. To help reduce data collection costs and provide consistency over time, models to predict crown widths for urban-grown species were developed using data from 49 cities across the U.S. and Southern Canada. The effort consisted of fitting mixed models for 29 species groups that encompassed 964 species. Cities were considered a random effect and were statistically significant for 22 of the 29 groups. The need for urban-specific crown width models was demonstrated via examination of prediction biases found when applying crown width models based on forest grown trees, where under-prediction up to about 20% was found for the same species growing in urban areas. Application of the models was evaluated by using crown width predictions instead of observed values for calculations of crown leaf area. Mean percent differences in leaf area were about $\pm 10\%$ across most species groups. Further improvements to national-scale urban crown width models should be pursued as additional data become available via i-Tree, Urban FIA, and possibly other sources where data collection protocols are compatible.

 $\textbf{Keywords} \ \ \text{Ecosystem services} \ \cdot \text{Forest inventory} \cdot \text{Mixed models} \ \cdot \text{Leaf area} \ \cdot \text{Spatial trend}$

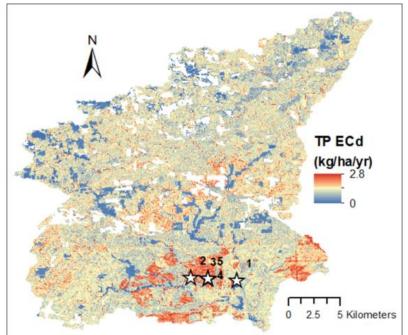
The Research Suite i-Tree's science incubator

Actively in-development tools, available for use

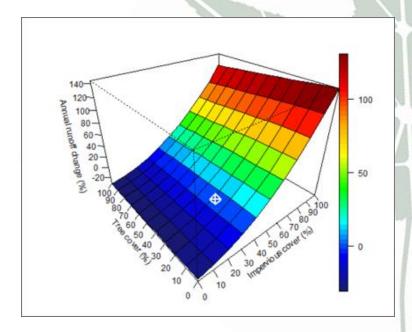
https://www.itreetools.org/tools/research-suite

Calculation Parameters: Config.xml

```
a3 OHM_Urban23 W_p_m2>-39.0</a3_OHM_Urban23_W_p_m2><!--
<Flag AdiabaticLapseRate>0</Flag AdiabaticLapseRate>
                                                             units W/m2-->
                                                              Area Roof Urban23 frac>0.40</Area Roof Urban23 frac><!--
                                                             Albedo Urban24 frac>0.15</Albedo Urban24 frac><!--Option</p>
<Flag ExperimentalResistanceFunction>0</Flag Experime</pre>
                                                              Height Avg Urban24 m>15</Height Avg Urban24 m><!--Option
heating to cooling w canyon resistance-->
<IterationCount>40</IterationCount><!--Options: > 0;
                                                             <Width Road Urban24 m>12.5</Width Road Urban24 m><!--Opti</p>
<Albedo Urban21 frac>0.4</Albedo Urban21 frac><!--Opt
                                                              Emissivity Urban24 frac>0.95</Emissivity Urban24 frac><
<Height Avg Urban21 m>1</Height Avg Urban21 m><!--Opt</pre>
                                                             <al_OHM_Urban24_frac>0.557</al_OHM_Urban24_frac><!--Optic</p>
<Width Road Urban21 m>100</Width Road Urban21 m><!--O
                                                             radiation NR; units frac-->
<Emissivity Urban21 frac>.95</Emissivity Urban21 frac</pre>
                                                             <a2 OHM Urban24 hr>0.322</a2 OHM Urban24 hr><!--Options:</p>
transmitted-->
                                                             <a3 OHM Urban24 W p m2>-37.3</a3 OHM Urban24 W p m2><!--</p>
<al OHM Urban21 frac>0.656</al OHM Urban21 frac><!--C
radiation NR; units frac-->
                                                              Area Roof Urban24 frac>0.60</Area Roof Urban24 frac><!-
<a2 OHM Urban21 hr>0.304</a2 OHM Urban21 hr><!--Optio
                                                             <Height Avg TreeCover m>11</Height Avg TreeCover m><!--Op</p>
<a3 OHM Urban21 W p m2>-41.6</a3 OHM Urban21 W p m2>
                                                             <Albedo_Tree_frac>0.15</Albedo_Tree_frac><!--Options: 0</pre>
                                                             Emissivity Tree frac>0.97</Emissivity Tree frac><!--Opt.</p>
<Area Roof Urban21 frac>0.1</Area Roof Urban21 frac>
                                                             <Width Leaf Tree m>0.05</Width Leaf Tree m><!--Options:</pre>
<Albedo Urban22 frac>0.25</Albedo Urban22 frac><!--Op
                                                             <Resistance Tree Min spm>100</Resistance Tree Min spm><!</p>
<Height Avg Urban22 m>5</Height Avg Urban22 m><!--Opt</pre>
                                                             <al OHM Tree frac>0.215</al OHM Tree frac><!--Options: 0</p>
units m-->
<Width Road Urban22 m>10</Width Road Urban22 m><!--Op
                                                             <a2_OHM_Tree_hr>0.325</a2_OHM_Tree_hr><!--Options: 0 to</pre>
<Emissivity Urban22 frac>0.95</Emissivity Urban22 fra</pre>
                                                             (a3 OHM Tree W p m2>-19.9</a3 OHM Tree W p m2><!--Options</p>
transmitted-->
<al OHM Urban22 frac>0.636</al OHM Urban22 frac><!--C
                                                             <Height Avg SVegCover m>0.5</Height Avg SVegCover m><!--</p>
radiation NR; units frac-->
                                                             <Albedo SVeg frac>0.25</Albedo SVeg frac><!--Options: 0</pre>
<a2 OHM Urban22 hr>0.307</a2 OHM Urban22 hr><!--Optio</p>
                                                             Emissivity SVeg frac>0.97</Emissivity SVeg frac><!--Opt</p>
                                                             <Width Leaf SVeg m>0.02</Width Leaf SVeg m><!--Options:</pre>
<a3 OHM Urban22 W p m2>-40.7</a3 OHM Urban22 W p m2>
                                                             <Resistance SVeq Min spm>100</Resistance SVeq Min spm><!</p>
units W/m2-->
<Area Roof Urban22 frac>0.20</Area Roof Urban22 frac>
                                                             <al_OHM_SVeg_frac>0.215</al_OHM_SVeg_frac><!--Options: 0
<Albedo Urban23 frac>0.18</Albedo Urban23 frac><!--Op
                                                             NR; units frac-->
<Height Avg Urban23 m>10</Height Avg Urban23 m><!--Op</pre>
                                                             (a2 OHM SVeg hr>0.325</a2 OHM SVeg hr><!--Options: 0 to</p>
                                                             (a3 OHM SVeg W p m2>-19.9</a3 OHM SVeg W p m2><!--Options</p>
<Width_Road_Urban23_m>12.5</Width_Road_Urban23_m><!--
<Emissivity Urban23 frac>0.95</Emissivity Urban23 fra</pre>
                                                             <Height Avg SoilCover m>0.1
/Height Avg SoilCover m><!--</p>
transmitted-->
                                                             <Albedo_Soil_frac>0.17</Albedo_Soil_frac><!--Options: 0</pre>
<al OHM Urban23 frac>0.596</al OHM Urban23 frac><!--
                                                             Emissivity Soil frac>0.95</Emissivity Soil frac><!--Opt:</p>
radiation NR: units frac-->
                                                             (al OHM Soil frac>0.355</al OHM Soil frac><!--Options: 0</p>
<a2 OHM Urban23 hr>0.315</a2 OHM Urban23 hr><!--Option
                                                             NR; units frac-->
                                                             (a2 OHM Soil hr>0.335</a2 OHM Soil hr><!--Options: 0 to</p>
<a3 OHM Urban23 W p m2>-39.0</a3 OHM Urban23 W p m2>
                                                             (a3 OHM Soil W p m2>-35.3</a3 OHM Soil W p m2><!--Option</p>
<Area Roof Urban23 frac>0.40</Area Roof Urban23 frac>
                                                             <Height Avg WaterCover m>0.001
/Height Avg WaterCover m>
```



i-Tree Cool Air

A spatial air temperature model incorporating the impacts of trees and impervious cover


i-Tree Buffer

A spatially-distributed hydrological model that simulates effects of land use and topography to predict nutrient hot spots

i-Tree Hydro+

A hydrological model that simulates effects tree/impervious cover and green infrastructure on hourly runoff

i-Tree Cool Air: Example Project

Mapping heat mitigation by tree cover in Naples,

EUROPEAN JOURNAL OF REMOTE SENSING https://doi.org/10.1080/22797254.2022.2125833

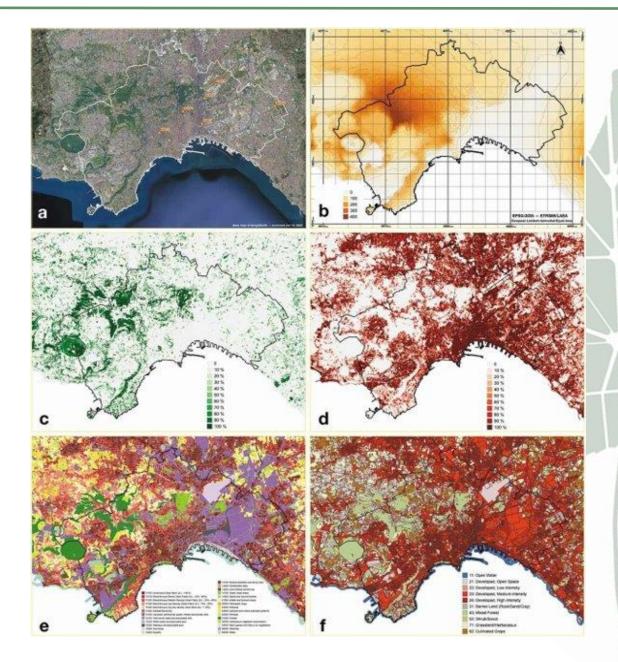
RESEARCH ARTICLE

OPEN ACCESS Check for updates

Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map urban heat mitigation by tree cover

Rocco Pace (a), Francesca Chiocchini (a), Maurizio Sarti (a), Theodore A. Endreny (a), Carlo Calfapietra (a) and Marco Ciolfi (a)

^aResearch Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, Italy; ^bInstitute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany; ^cDepartment of Environmental Resources Engineering, SUNY ESF, Syracuse, NY, USA

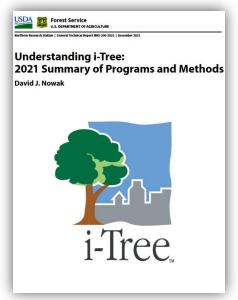

ABSTRACT

Cities host more than half of the world's population and due to global warming and land use change their vulnerability to deadly heat waves has increased. A healthy vegetated landscape can abate heat wave severity and diminish the related urban heat island through the process of evapotranspiration. This research aimed to develop a methodology for cities to use publicly available Copernicus land cover maps within the i-Tree Cool Air water and energy balance model to map air temperature and humidity. The manuscript presents proof of concept using Naples, Italy with its Mediterranean climate characterized by limited soil water for cooling via evapotranspiration. The approach achieved strong correlations between predicted and observed air temperatures across the city (r \geq 0.89). During the warm season of 2020, forested land cover was 5°C cooler than land cover dominated by impervious cover. Simulated land cover change, limited to a 10% increase or decrease in tree cover, generated an inverse change of 0.2°C in maximum hourly air temperature, with more trees obtaining cooler air. Soil water limited the cooling, with the generally wetter spring season enabling greater cooling of air temperatures, and summer droughts without irrigation had constrained cooling. Sustainable urban design will likely require an increase in plant cover along with a reduction of impervious surfaces that absorb and reradiate heat in order to improve community resilience to heat waves.

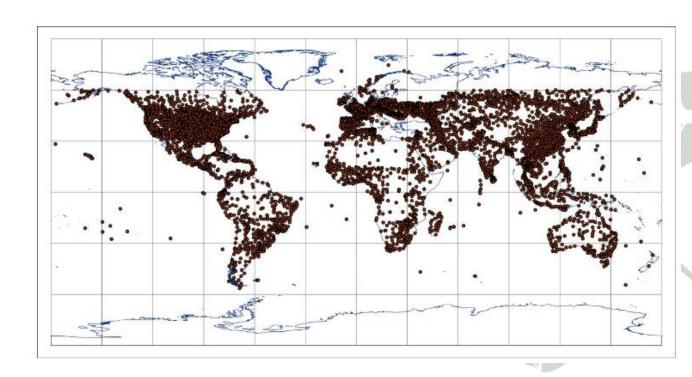
ARTICLE HISTORY
Received 18 March 2022
Revised 11 July 2022
Accepted 13 September 2022

KEYWORDS

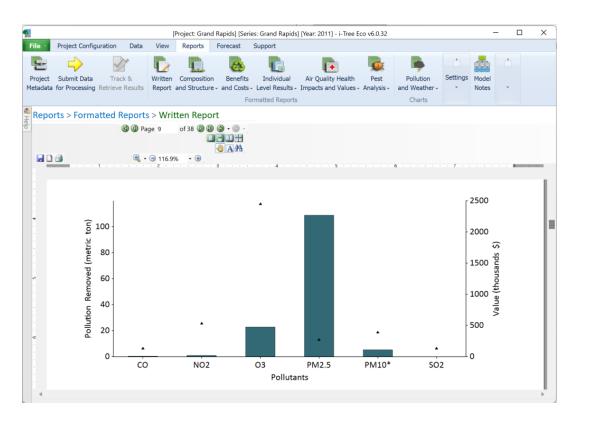
Heat waves; urban trees; temperature reduction; mediterranean city; Urban Atlas; ecosystem services



DOI: 10.1080/22797254.2022.2125833

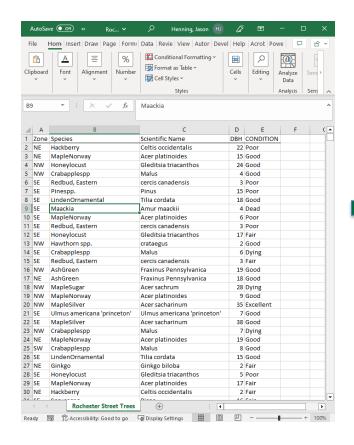

More recent science updates

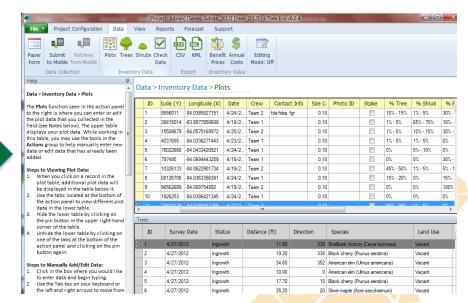
- <u>Understanding i-Tree</u> omnibus methods documentation
- Tropical species carbon equations
- Leaf nutrients estimates
- Urban wood values
- Species specific pollen production


In development

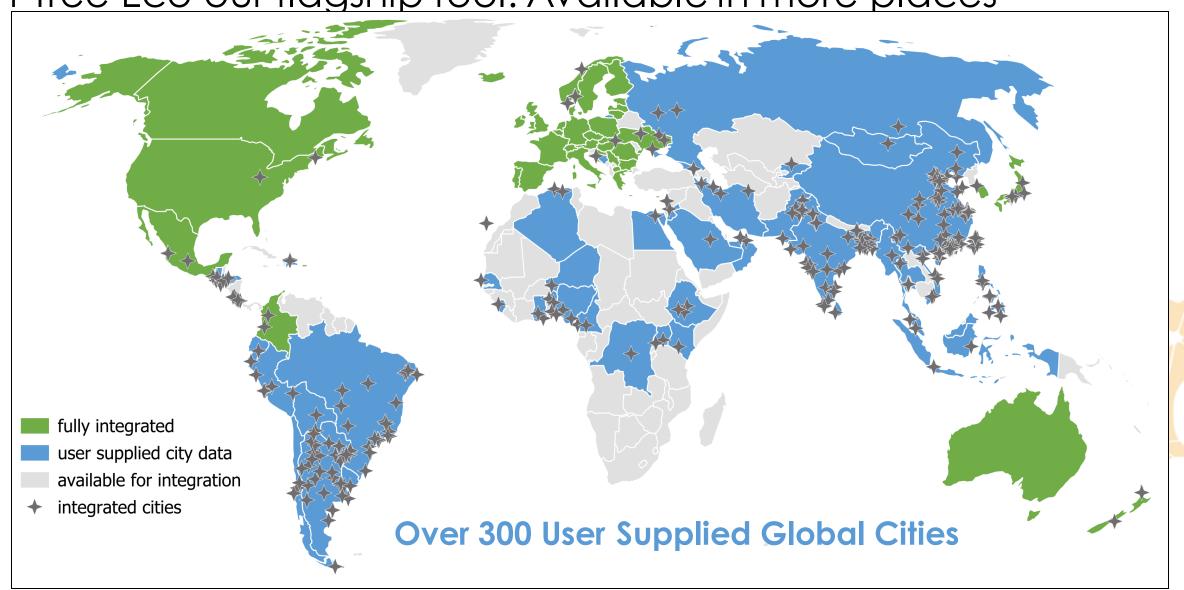
- Expanded weather data
- Wildlife model enhancement
- New tree cover and climate projections
- i-Tree Energy
- ...and more

i-Tree is more than science

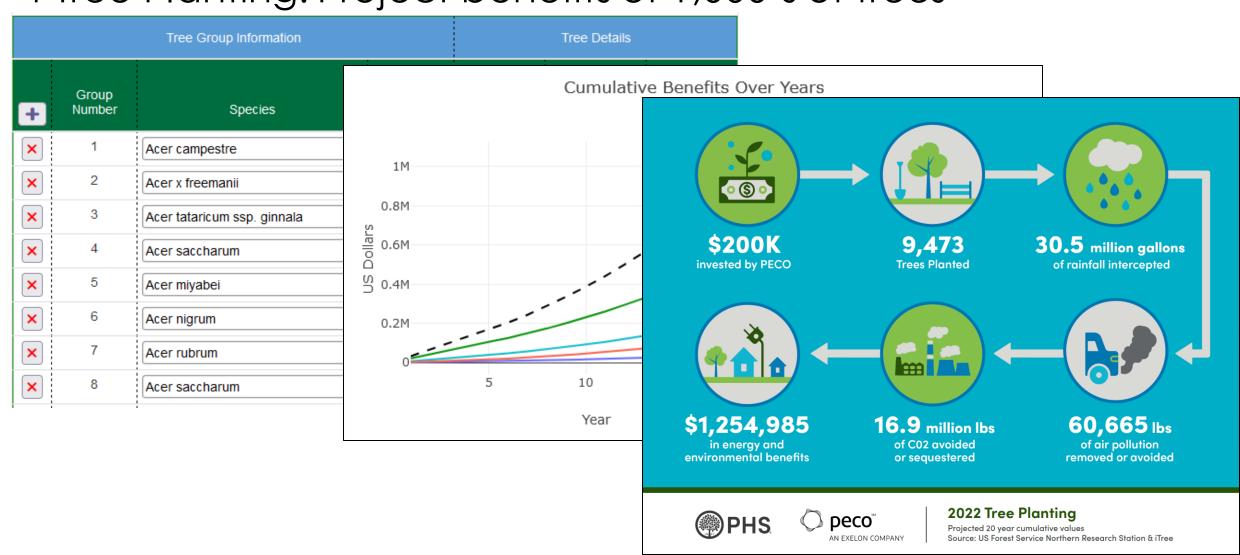




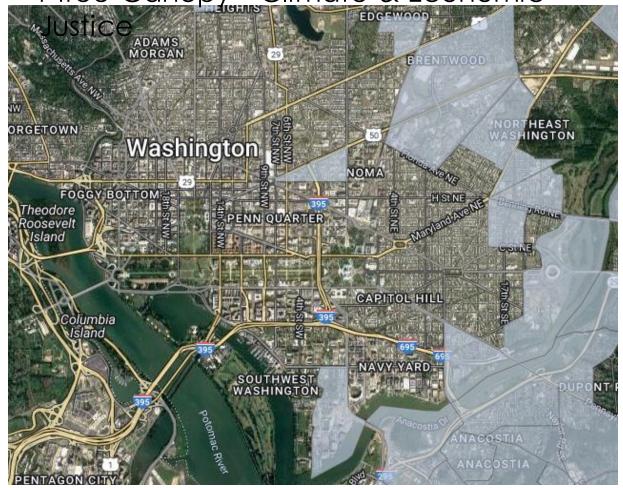
i-Tree Eco our flagship tool: Easy data import



Up to 500,000 trees

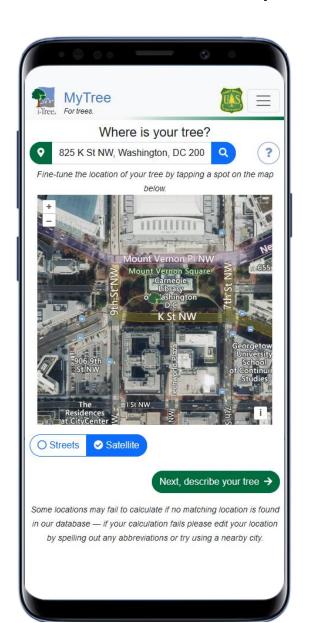


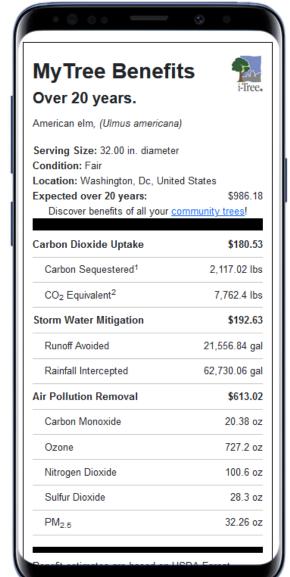
i-Tree Eco our flagship tool: Available in more places

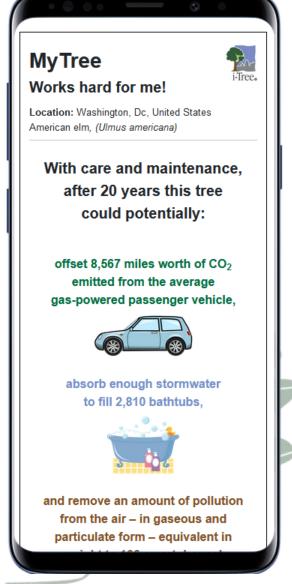

i-Tree Planting: Project benefits of 1,000's of trees

Easier to identify where tree benefits matter

i-Tree Canopy—Climate & Economic

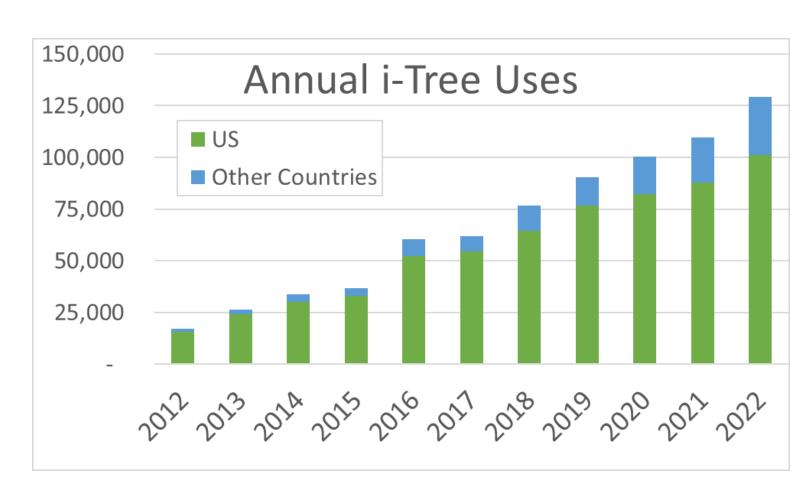



i-Tree Landscape—Historic Red-lining Morgan State Cylburn Arboretum Roland PARK CLENHAM-BELFORD Howerd Park Walters Art Museum 🤒 Baltimore X A - Most Desirable 🔀 B - Desirable C - Needs Improvement - Needs Significant Improvement



MyTree: i-Tree Science Everywhere

MyTree.itreetools.or



Supporting i-Tree Users

- i-Tree Open Academies (spring and summer sessions)
- i-Tree For Funding webinars
- i-Tree International Academy
- i-Tree Office Hours
- Over 1,000 individual technical support contacts each year

Check out what's new in i-Tree www.itreetools.org

Connect with us

- i-Tree Day (Wednesday)
- Future i-Tree Academies
- Office Hours
- Connect on LinkedIn
- info@itreetools.org

Thank you

Jason Henning | The Davey Institute www.itreetools.org

2nd World Forum on Urban Forests 2023

Transdisciplinary and arts-centered approaches to stewardship and sustainability of urban forests

Presented by

Lindsay K. Campbell, PhD

Co-authors: Chris Fremantle, David Maddox, Erika Svendsen, Sarah Hines, Mary Mattingly, Matthew López-Jensen, Nikki Lindt, Liza Paqueo, Michelle Johnson

Context

- Climate change, unsustainable development, and systemic inequality produce 'wicked problems' that require multidimensional thinking and practice.
- Arts offers a distinct 'way of knowing' and a novel approach to these problems.
- Transdisciplinarity addresses complex challenges and values different forms of knowledge.

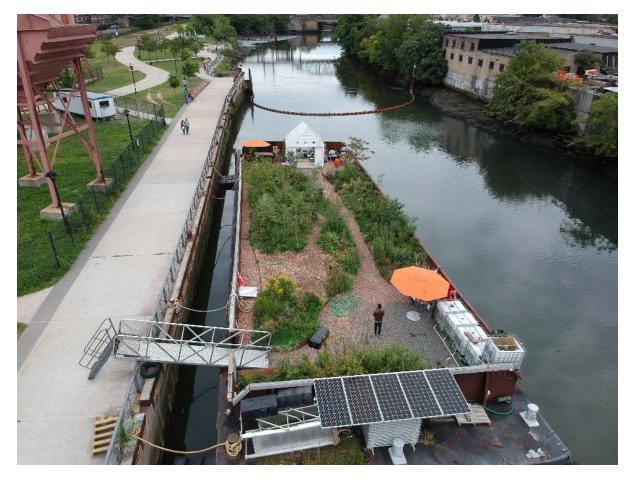
Approach: Urban Field Station Collaborative Arts Program

- We build understanding of and engagement with urban forests and social-ecological systems through arts.
- We facilitate transdisciplinary collaboration between artists, scientists, and land managers.
- We curate events and public programs that explore ideas emerging from these collaborations.

Materials and Methods

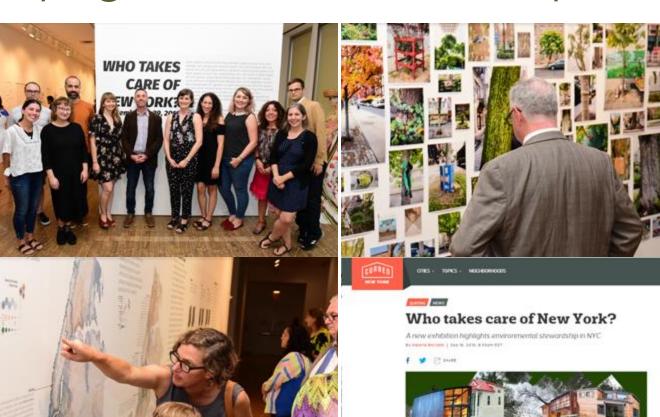
- UFS Arts programmatic data from 2016-2023, including:
 - Organizing team field notes
 - Group debriefs from quarterly UFS Arts all hands meetings
 - Artists' program evaluation assessments
- Case studies:
 - Matthew López-Jensen's Tree Love
 - Nikki Lindt's Underground Sound Project
 - Mary Mattingly's Swale
 - The UFS exhibition Who Takes Care of New York?

Sensitizing us to the capacities of trees and forests



(Left to Right: Tree Love by Matthew López-Jensen; Underground Sound Project by Nikki Lindt)

Critical provocation, social practice art, and productive landscapes



Amplifying stories of community stewardship

(Who Takes Care of New York? Photos courtesy of Malcolm Pinckney, NYC Parks)

Discussion

How do collaborations between artists, scientists, and land managers transform stewardship practices?

- By posing new types of questions, art can create an opening for critical reflection in land management.
- 2. Art can engage multiple ways of knowing and making meaning of place, land, and ecosystems; these modes have the potential to engage a wide range of diverse publics.
- 3. Art can recognize and engage in two-way learning and dialogue across differences.

Join us!

- Urban Field Station Collaborative Arts Program welcomes new artists and collaborative partners - contact us.
- Current 2024 call for artists is open at: <u>www.ufsarts.com</u>.

The 2022 UFS artist cohort

Thank you

Lindsay Campbell | USDA Forest Service

www.ufsarts.com

Lindsay.campbell@usda.gov

2nd World Forum on Urban Forests 2023

Urban Forests and Equity:

The Use of the My City's Trees App to Explore the Distribution of Trees and Benefits in Several U.S. Cities Through a Social Vulnerability Lens

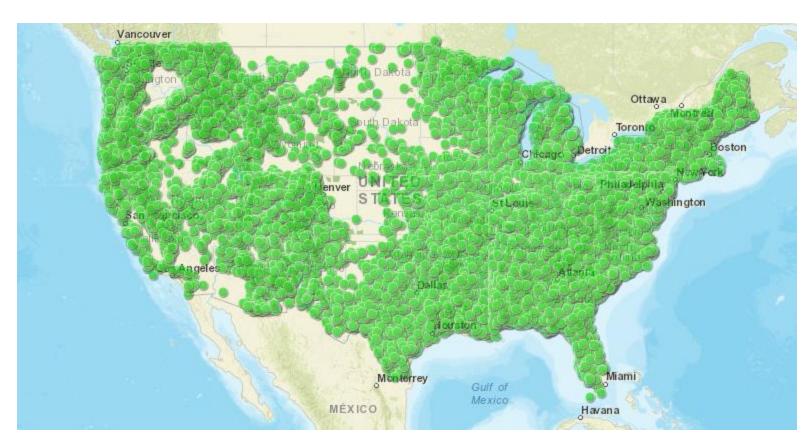
Presented by

Tonya Lister, USDA Forest Service, Forest Inventory and Analysis (FIA)

Sjana Schanning, USDA Forest Service, FIA

Nancy Sonti, USDA Forest Service, Baltimore Field Station

Rebekah Zehnder, Texas A&M Forest Service



USDA Forest Service, Forest Inventory

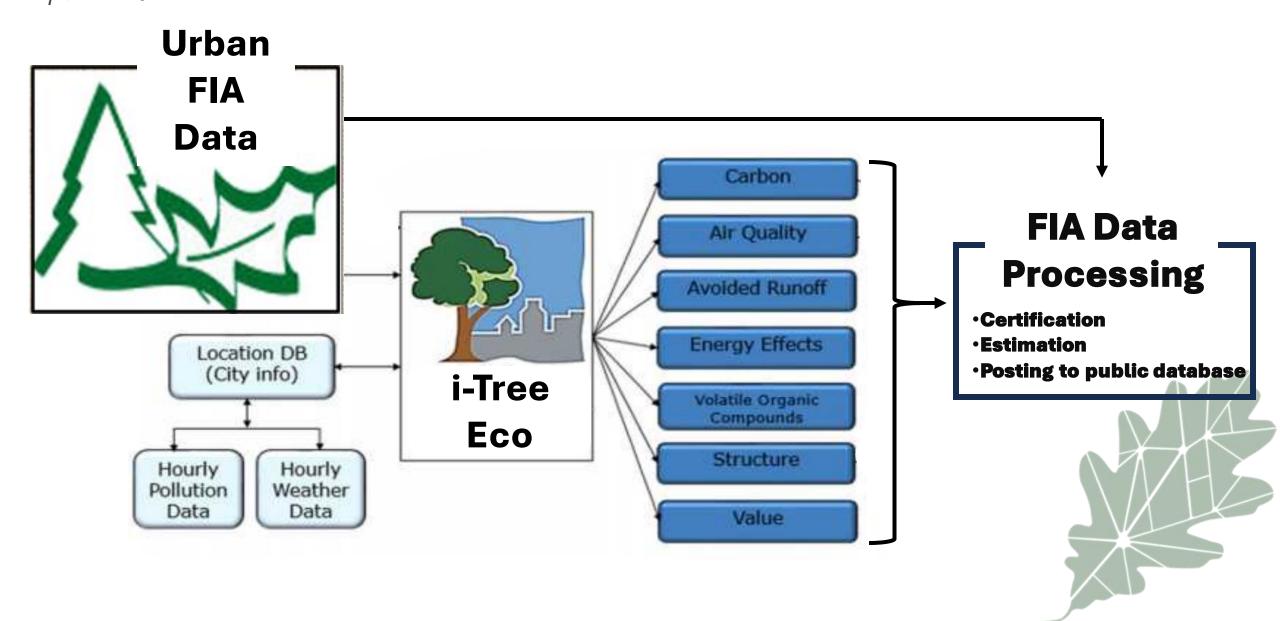
and Analysis (FIA) Program

FIA field crews sample more than 130,000 forested plots (represented by dots) to compile the inventory. These plots are found throughout the continental United States, Alaska, and the Nation's territories in the Caribbean and Pacific.

Urban FIA Program Goal

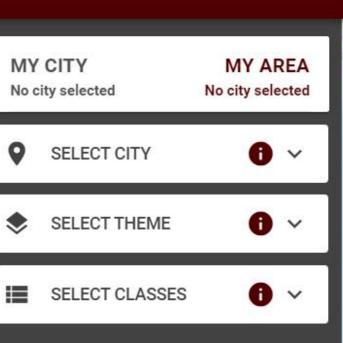
- Annually monitor the forests of all U.S. Census-defined urban areas with a special emphasis on the largest cities in the nation.
- UFIA is currently initiated in 44 cities, in 28 states with 24 statewide urban area projects.

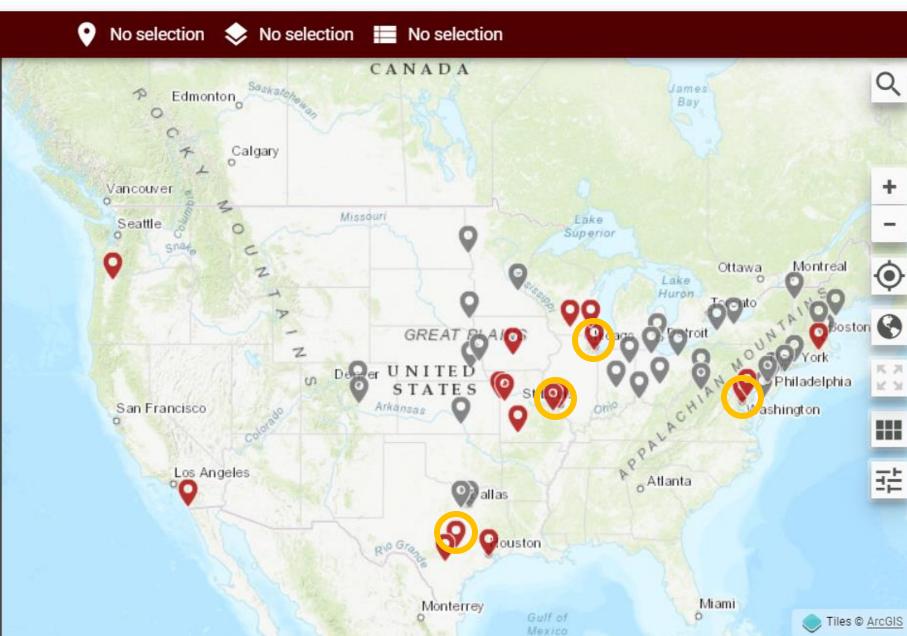
Urban FIA Data-FIA core variables



- Tree data--species type, tree measurements, damages, health, and condition...
- Site conditions –land use, ownership, veg and surface cover
- Percent cover of selected invasive plant species...
- Derived estimates of volume, biomass, and carbon
- Change data and trend estimates with remeasurement data

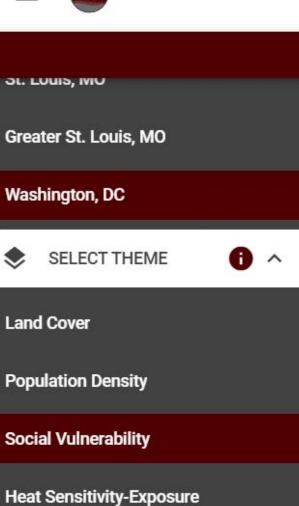
Integration of i-Tree Eco Methods

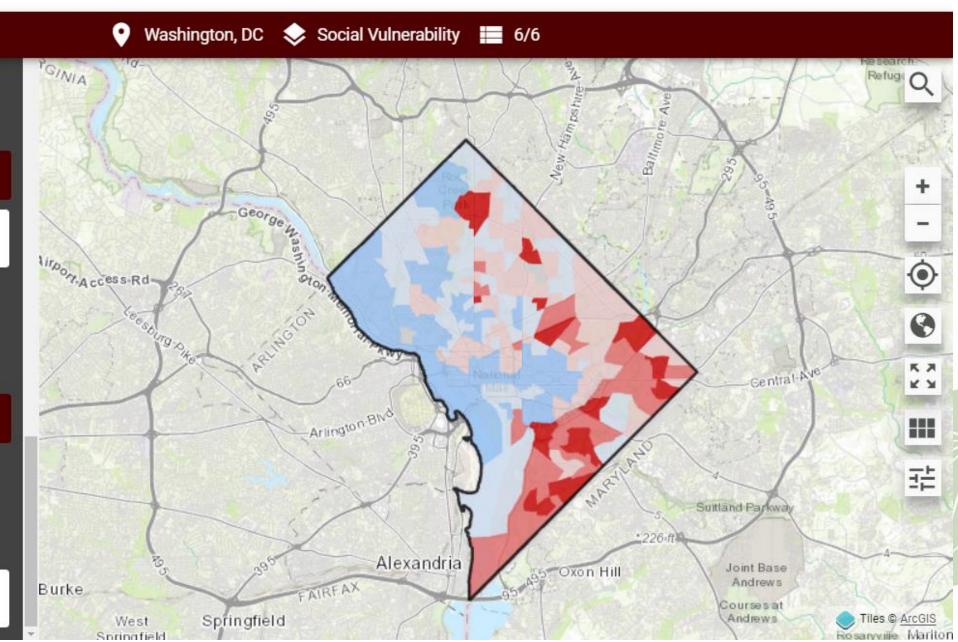




Wards

SELECT CLASSES





Social Vulnerability Index (SVI)

Centers for Disease Control and Prevention (CDC) Agency for Toxic Substances and Disease Registry (ATSDR)

Household Characteristics

Socioeconomic Status

Below 150% Poverty Unemployed **Housing Cost Burden** No High School Diploma

Aged 65 & Older

No Health Insurance

Aged 17 & Younger

Civilian with a Disability

Single-Parent Households

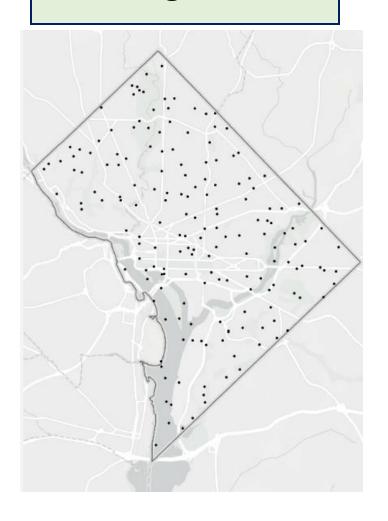
English Language Proficiency

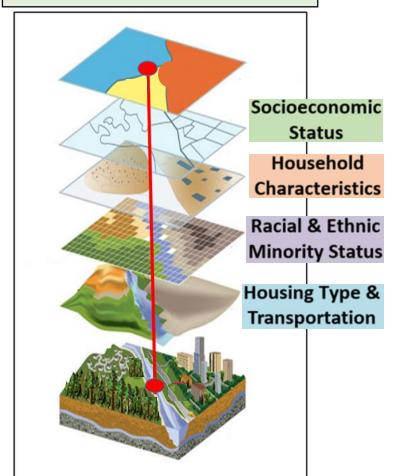
Racial & Ethnic **Minority Status**

Hispanic or Latino (of any race) Black or African American, Not Hispanic or Latino Asian, Not Hispanic or Latino American Indian or Alaska Native, Not Hispanic or Latino Native Hawaiian or Pacific Islander, Not Hispanic or Latino Two or More Races, Not Hispanic or Latino Other Races, Not Hispanic or Latino

Housing Type & Transportation

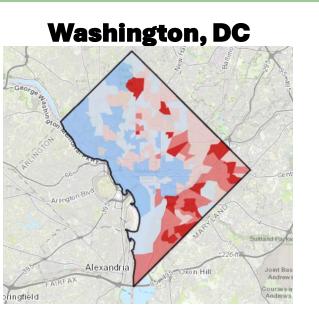
Multi-Unit Structures Mobile Homes Crowding No Vehicle **Group Quarters**

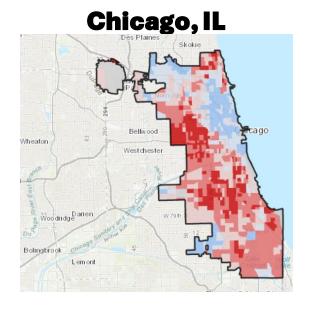

- Developed to help public health officials and emergency response planners identify and map the communities that will most likely need support before, during, and after a hazardous event.
- Relative ranking of vulnerability based on 16 social factors from 2020 U.S. Census American Community Survey data.

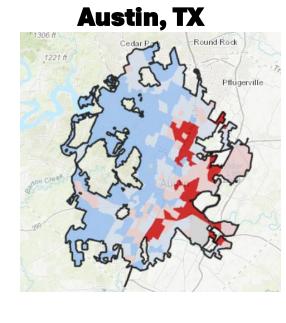


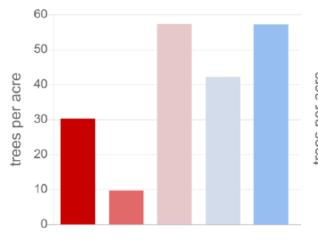
Attaching SVI Data to Urban FIA Plots

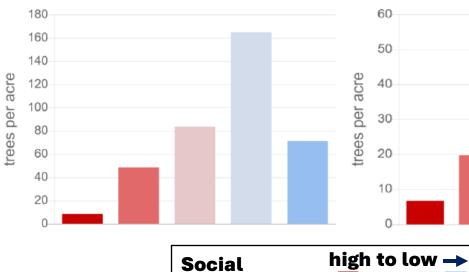
Urban FIA plots in Washington, DC

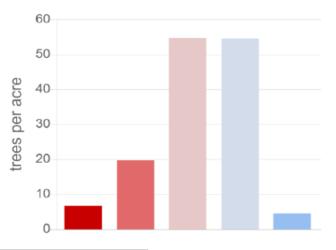

Plots are labeled with census tract SVI data

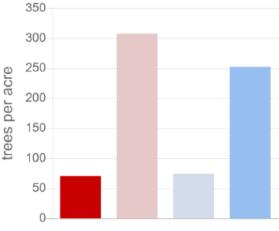

SVI available as an analysis variable

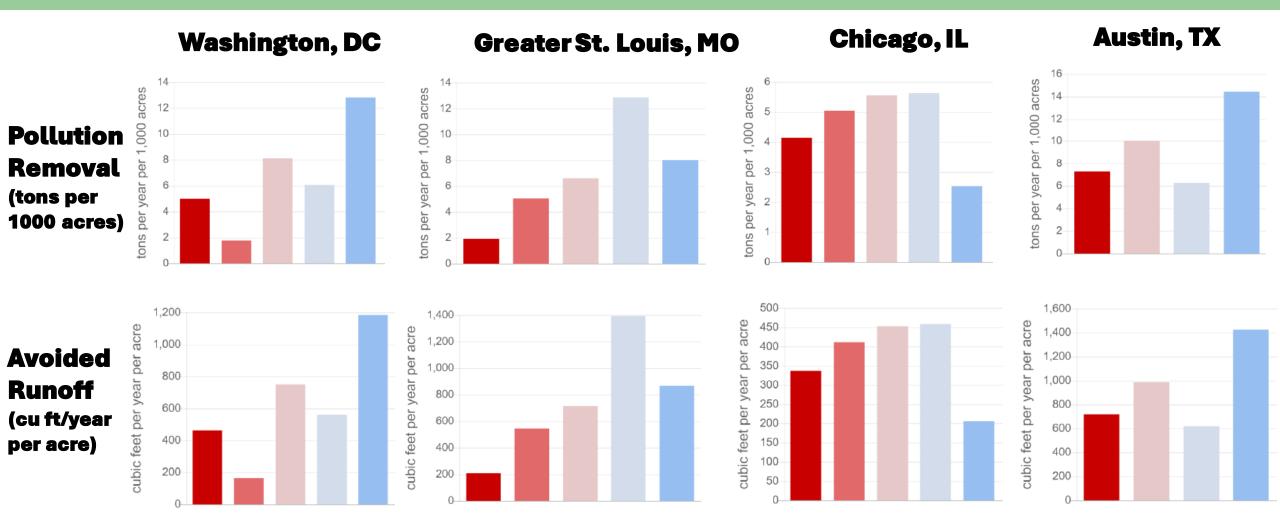

PE_CN	EVAL_ID	PLT_CN	SVI_Theme1	SVI_Theme2	SVI_Theme3	SVI_Theme4
	Washington2021Curr	508333366126144	0.94	0.94	0.94	0.94
1.27309E+15	Washington2021Curr	508333372126144	0.90	0.90	0.90	0.90
1.27309E+15	Washington2021Curr	508333372126144	0.90	0.90	0.90	0.90
1.27309E+1	Washington2021Curr	508333372126144	0.90	0.90	0.90	0.90
1.27309E+15	Washington2021Curr	508333372126144	0.61	0.61	0.61	0.61
1.27309E+15	Washington2021Curr	508333372126144	0.61	0.61	0.61	0.61
1.27309E+15	Washington2021Curr	508333372126144	0.61	0.61	0.61	0.61
1.27309E+15	Washington2021Curr	508333372126144	0.61	0.61	0.61	0.61
1.27309E+15	Washington2021Curr	508333375126144	0.61	0.61	0.61	0.61
1.27309E+15	Washington2021Curr	508333375126144	0.61	0.61	0.61	0.61
	Washington2021Curr	508333375126144	0.49	0.49	0.49	0.49
1.27309E+15	Washington2021Curr	508333375126144	0.45	0.45	0.45	0.45
	Washington2021Curr	508333375126144			0.41	0.41
	Washington2021Curr	508333375126144				
	Washington2021Curr	508333375126144			0.32	
	Washington2021Curr	508333375126144				
	Washington2021Curr	508333375126144				
	Washington2021Curr	508333377126144			0.19	
	Washington2021Curr	508333377126144				
	Washington2021Curr	508333377126144				
	Washington2021Curr	508333382126144			0.06	
	Washington2021Curr	508333383126144				
	Washington2021Curr	508333384126144			-0.03	-0.03
	Washington2021Curr	508333384126144			-0.07	-0.07
1.25 1.25 1.25 1.25 1.25 1.25 1.25	= *₁			_	b	1
1.27 1.27 1.27					*	=
1.27		* !=			1	


Tree Density by Social Vulnerability

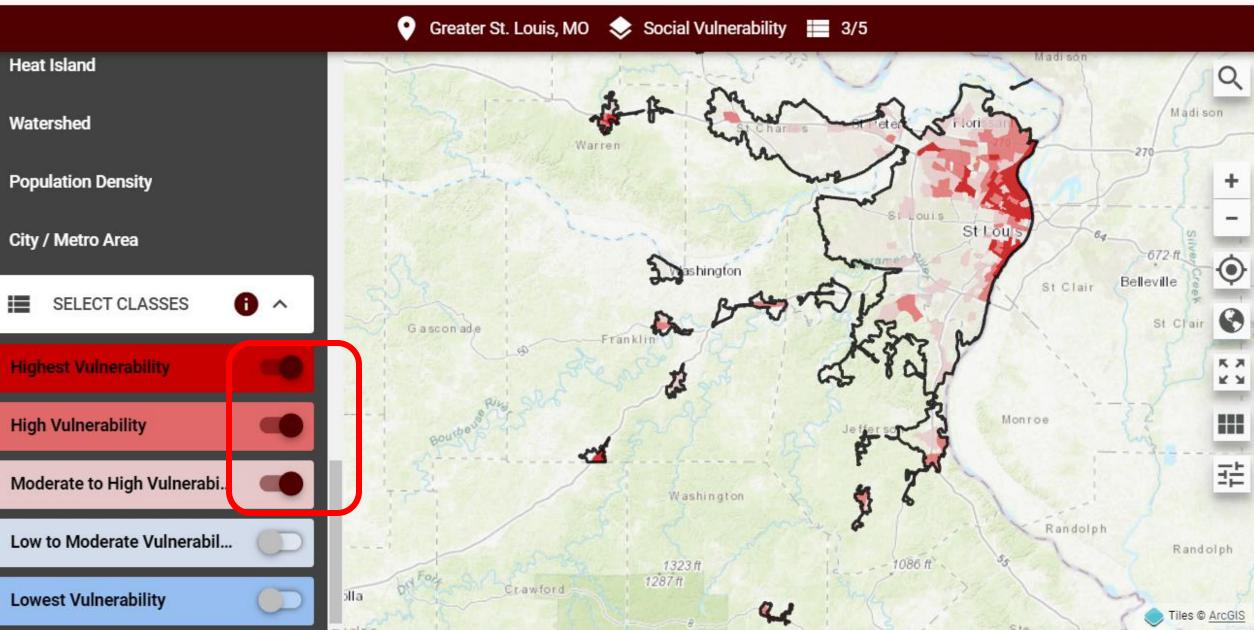


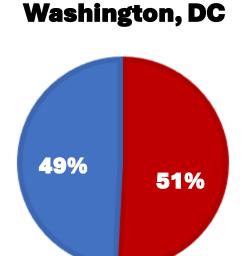


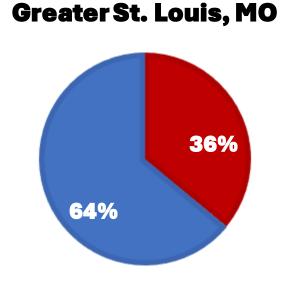


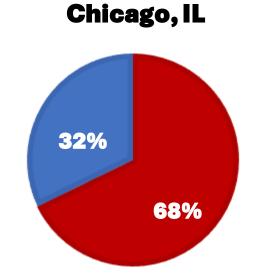


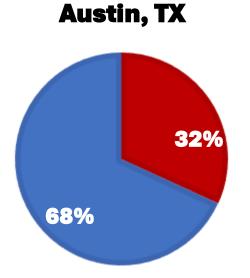
Vulnerability

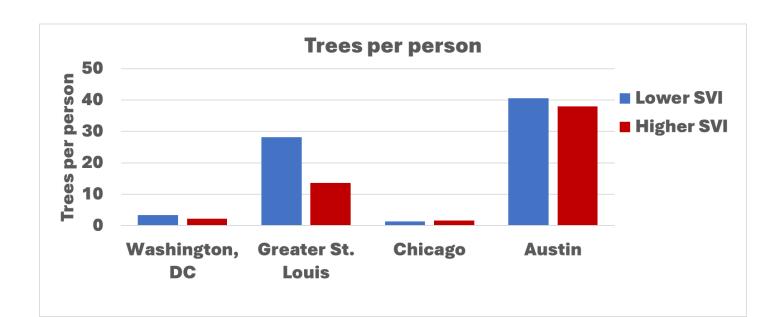

Select Ecosystem Services by Social Vulnerability










Population Distribution by SVI Class

Number of Trees by Land Use and SVI

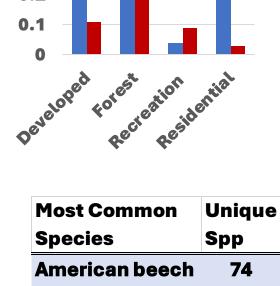
Lower

Higher

SVI

SVI

Washington, DC

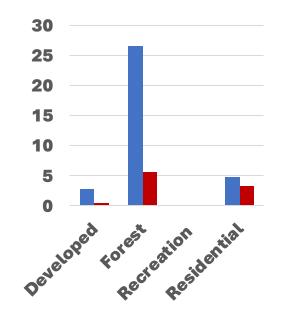

0.6

0.5

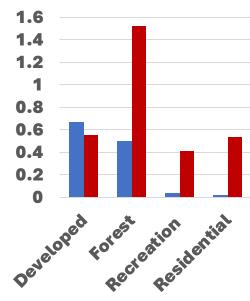
0.4

0.3

0.2


45

yellow poplar


American beech

red maple

Greater St. Louis, MO

Chicago, IL

Austin, TX

1.6	25
1.4 ————————————————————————————————————	20
1 ——	15 ———
0.8 — — — — — — — — — — — — — — — — — — —	10
0.4	5 —
0.2	0
Developed Forest Residential	Developed Forest Residential
* *	* *

Most Common	Unique
Species	Spp
eastern redcedar	82
green ash	
eastern redcedar	66
American elm	

Most Common	Unique
Species	Spp
common buckthorn	22
white mulberry	
common buckthorn	44
Siberian elm	

Most Common	Unique
Species	Spp
Ashe juniper	58
Cedar elm	
cedar elm	38
sugarberry	

Urban Forest Stats (v. 0.0.1)

This site is for testing purposes only

Geography

San Antonio, TX 2021 Current Estimates San Antonio, TX 2021 Current Estimates San Diego, CA 2017 Current Estimates San Diego, CA 2018 Current Estimates San Diego, CA 2019 Current Estimates San Diego, CA 2021 Current Estimates Springfield, MO 2018 Current Estimates Springfield, MO 2019 Current Estimates Springfield, MO 2020 Current Estimates St. Louis, MO 2018 Current Estimates St. Louis, MO 2019 Current Estimates St. Louis, MO 2021 Current Estimates

Washington, DC 2018 Current Estimates

Washington, DC 2019 Current Estimates

Washington, DC 2021 Current Estimates

Estimate numerator

Leaf Area Index Leaf Biomass Index, in pounds per square foot Compensatory value, in dollars Number of live seedlings (less than 1 inch d.b.h./d.r.c.), Gross sawlog volume of sawtimber trees, in board feet Net sawlog volume of sawtimber trees, in board feet (I Annual electricity use avoided, in kilowatt hours Annual fuel use avoided, in British thermal units Annual electricity-based carbon emissions avoided, in Annual fuel-based carbon emissions avoided, in pound Annual value of electricity use avoided, in dollars Annual value of fuel use avoided, in dollars Annual value of carbon emissions avoided, in dollars Basal area of live mother trees (at least 1 inch d.b.h./d. Number of live mother trees (at least 1 inch d.b.h./d.

Estimate denominator

No denominator - just produce estimates

Area of sampled land and water, in acres Area of building cover, in acres Area of impervious cover, in acres Area of permeable cover, in acres Area of herbaceous cover, in acres Area of water cover, in acres Area of tree cover, in acres Number of live trees (at least 1 inch d.b.h./d.r.c.), in tre

Basal area of live trees (at least 1 inch d.b.h./d.r.c.), in s Aboveground and belowground biomass of live and d Area of shrub/seedling cover, in acres

Aboveground and belowground carbon in live and dea Annual gross carbon sequestration in live trees (at leas Annual gross carbon sequestration in live trees (at leas -

Row variable

Damage type - stem girdling Damage type - topping or pruning Density class Diameter check Diameter class FIA land use Land cover class Maintained area for seedlings Mtree Crown dieback Mtree Crown exposed to light Mtree Diameter check Mtree Diameter class Mtree Species common name Mtree Species group code Mtree Species scientific name Mtree Tree planted

Column variable

Condition status Cover class Crown class Damage type - bark inclusion Damage type - excessive mulching Damage type - improper planting Damage type - overhead wires Damage type - sidewalk-root conflict Damage type - stem girdling Damage type - topping or pruning Density class Diameter check Diameter class FIA land use Land cover class

Additional grouping variable

None	_
Abnormal stem termination	
Afforested	
Bole stump removed	
Canopy cover method	
Cause of death	
Condition status	
Cover class	
Crown class	
Damage type - bark inclusion	
Damage type - excessive mulching	
Damage type - improper planting	
Damage type - overhead wires	
Damage type - sidewalk-root conflict	
Damage type - stem girdling	•

Grouping Variables: - FIA land use - Nonsampled reason Note: '-' indicates no value for data tal

reader, it is recommended to adjust ve screen reader settings.

Output

Estimate Parameters

Estimate: Area of herbaceous cover. Geography: StLouis2021Curr

Estimate:

Forest land 21,937 Agriculture 2,120 Commercial/Industrial 37,160 Residential 121,361 Multi-family Residential 2,204		
The image	FIA land use	Total
Agriculture 2,120 Commercial/Industrial 37,160 Residential 121,361 Multi-family Residential 2,204 Recreation/Cemetery 16,795	Total	222,630
Commercial/Industrial 37,160 Residential 121,361 Multi-family Residential 2,204 Recreation/Cemetery 16,795	Forest land	21,937
Residential 121,361 Multi-family Residential 2,204 Recreation/Cemetery 16,795	Agriculture	2,120
Multi-family Residential 2,204 Recreation/Cemetery 16,795	Commercial/Industrial	37,160
Residential 2,204 Recreation/Cemetery 16,795	Residential	121,361
		2,204
Rights-of-Way 20,869	Recreation/Cemetery	16,795
	Rights-of-Way	20,869

Sampling error percen level 68%):

Note: for 95% confidence level multi

FIA land use	Total	Y	
Total	3.653		
Forest land	17.689		
Agriculture	87.973		
Commercial/Industrial	16.085		
Residential	6.923		
Multi-family Residential	38.676		
Recreation/Cemetery	26.090		
Rights-of-Way	19.469		

+ Add Condition Filter(s)

Add Tree Filter(s)

Show Results

HTML

Highlights:

- The pool of urban FIA data is growing.
- My City's Trees provides users easy access to Urban FIA data and more tools are in development.
- The social vulnerability theme in the MCT app helps users explore the equity of tree resources and benefits in a city.
- The data suggest that in select cities like Greater St. Louis and Washington, DC more socially vulnerable tracts may have lower tree density and tree benefits, but further research and exploration of sampling errors is needed.

Urban FIA is working on:

- State or region-level urban forest analyses
- Analyses of remeasurement data
- Annual reporting of urban FIA data and the development of online, interactive content/dashboards

Thank you

Tonya Lister, USDA Forest Service, FIA

tonya.lister@usda.gov

Links:

UFIA website https://www.fia.fs.usda.gov/program-features/urban/ My City's Trees App https://mct.tfs.tamu.edu/app

2nd World Forum on Urban Forests 2023

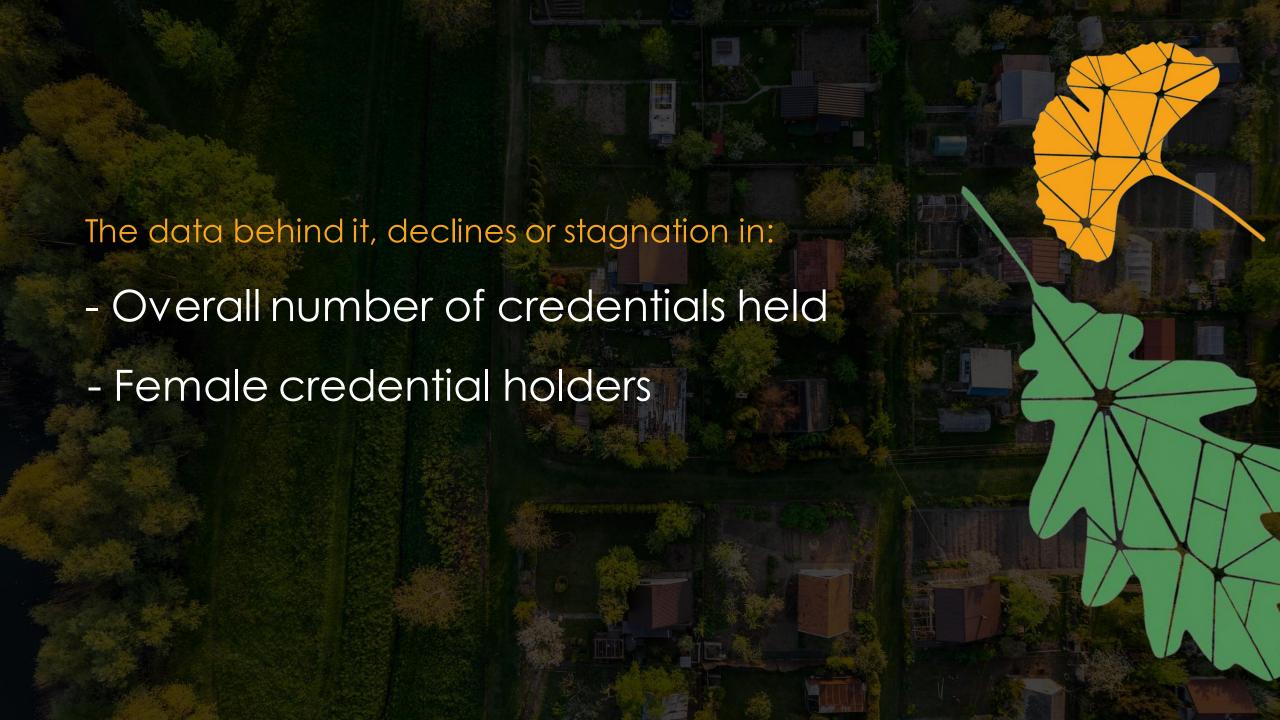
Inclusive Cities

Branding and Identity in Arboriculture

– Why it matters in expanding
diversity

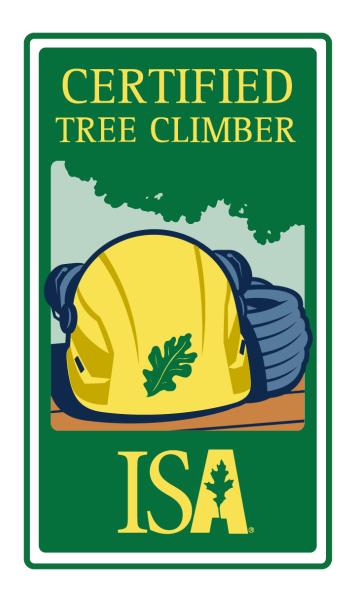
Presented by

Luana Vargas
International Society of Arboriculture
ATD Certified Professional in Talent
Development



This was our brand...

What messages or stories does it convey?



What did we do with the findings?

Our new look

Does it stop here with the rebrand?

- Intentionality of inclusion through different media
- Building diversity and inclusion inside and out

Intentional, inclusive language and imagery

Thank you

Luana Vargas | International Society of Arboriculture

CEUs

Session 2.3: Castle in the Sky: Creating and sharing new knowledge and supporting education on equitable access to ecosystem services

PP-23-3564

