

# THE CONTRIBUTION OF PERI-URBAN FORESTS TO THE CIRCULAR BIOECONOMY: THE CASE STUDY OF MONTE MORELLO IN ITALY

PIERATTI Elisa<sup>1</sup>, PALETTO Alessandro<sup>1</sup>, DE MEO Isabella<sup>2</sup>

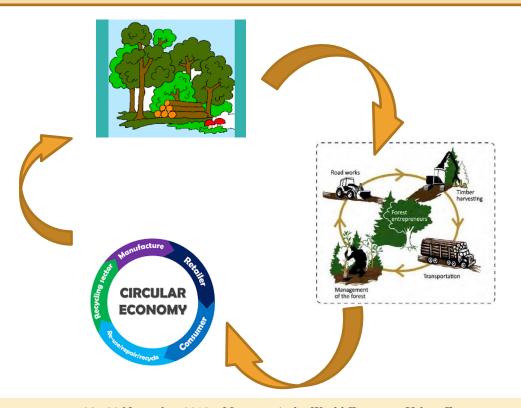
¹ Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Research Centre for Forestry and Wood, CREA- FL, Trento, Italy

<sup>2</sup> Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Research Centre for Agriculture and Environment, CREA-AA, Firenze, Italy.








# FRAMEWORK AND AIMS



The aim of the present study was to find a method to evaluate the potential value of the forest-wood chain in a peri-urban forest, following the circular bioeconomy point of view.

LIFE FoResMit project A FORESMIT





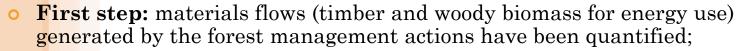






# FRAMEWORK AND AIMS




The aim of the present study was to find a method to evaluate the potential value of the forest-wood chain in a peri-urban forest, following the circular bioeconomy point of view.

LIFE FoResMit project AFORESMIT



Steps of the work:

### First step: We need data



## Second step: We need a link

Second step: a set of indicators to link the forest management actions to the 4R (Reduce, Reuse, Recycle, Recover) of the circular bioeconomy approach have been defined.

#### Third step: We need a way to compare

**Third step:** the current forest management strategy applied in the study area has been compared with four different scenarios, to evaluate the optimum solution by means of Multi-Criteria Decision Analysis (MCDA)







# Monte morello – peri-urban fores

The Monte Morello peri-urban forest located North West of the Florence city (Tuscany Region) is the result of a reforestation (1909-1980) action for hydrogeological protective purpose.

Currently, Monte Morello forest can be considered a **degraded forest** often characterized by poor regeneration, huge quantity of standing dead trees and lying deadwood, and a high degree of flammability.

➤Growing stock: 560 m³ ha-1

➤ Annual increment: 9.6 m³ ha<sup>-1</sup> yr<sup>-1</sup>

➤ Deadwood volume: 75 m³ ha<sup>-1</sup>









# Monte morello – peri-urban fores

In 2015 – LIFE FoResMit project –two different silvicultural treatments have been applied to Monte Morello forest (tested area of 10 ha).

#### Traditional thinning

Small and leaned trees and standing dead trees are harvested, while the lying deadwood is not removed.

Thinned 15-20% of basal area



#### Selective thinning

The choice of the trees to be cut is based on a positive selection all crown-volume competitors trees are harvested, standing dead trees and lying deadwood of 1st and 2nd decay class with dbh more than 20 cm are removed. **Thinned 30-40% of basal area**.







# Monte morello – peri-urban fores

In 2015 – LIFE FoResMit project –two different silvicultural treatments have been applied to Monte Morello forest (tested area of 10 ha).

#### Traditional thinning

Small and leaned trees and standing dead trees are harvested, while the lying deadwood is not removed.

Thinned 15-20% of basal area

#### Selective thinning

The choice of the trees to be cut is based on a positive selection all crown-volume competitors trees are harvested, standing dead trees and lying deadwood of 1st and 2nd decay class with dbh more than 20 cm are removed. **Thinned 30-40% of basal area**.

|                                                   | Traditional thinning | Selective thinning |
|---------------------------------------------------|----------------------|--------------------|
| Surface [ha]                                      | 5.35                 | 4.73               |
| Volume of growing stock [m³ ha-1]                 | 134.7                | 202.0              |
| Volume of deadwood (standing and lying) [m³ ha-1] | 9.5                  | 18.2               |
| Volume harvested for surface unit [m³ ha-1]       | 144.2                | 220.2              |
| Total volume collected [m³]                       | 772                  | 1042               |





# STEP 2- FOREST INDICATORS



- To try to link the 4R principles of the circular bio-economy with the forest sector 6 indicators have been defined.
- The six indicators take into account: the timber volume harvested, the potential and effective earnings due to the selling of the wood products, the saving of CO<sub>2</sub> emission due to the utilization of a renewable resource, the deadwood volume valorization, products life span.

| 4R      | Definition                                                                                                 | Indicator defined for the forest sector                                                                                                                                                                                                                                                  |
|---------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduce  | Improving of the process efficiency reducing the utilization of natural resource                           | $I_1$ - ratio (on annual basis) between the economic value of the wood harvested and the wood volume harvested $[\in ha^{-1}]$ $I_2$ - $CO_2$ emissions of the steps of forest-wood chain (from the felling to the transport) for unit volume $[tCO_2  m^{-3}]$                          |
| Reuse   | Life span of products/Products re-utilization before its disposal of .                                     | ${\rm I_3}$ - product life span before to be send to landfill or to be used for energy generation [years]                                                                                                                                                                                |
| Recycle | Level of recyclability of the products for other purpose/objects (paper, animal bedding, chipboard panels) | $I_4$ - ratio between the potential economic value of the wood assortment and the real value earned.<br>[€ $\mbox{\em } \epsilon^{-1}$ ]                                                                                                                                                 |
| Recover | Energy production from the "end-of-life products"                                                          | $I_5$ - ratio between $CO_2$ emissions saved by the timber sold for energy production (respect to the diesel oil) and the total cubic meter collected [kg $CO_2$ m $^{-3}$ ] $I_6$ - ratio between deadwood used for energy purpose and deadwood available in forest [m $^3$ m $^{-3}$ ] |

Crea Considerate Infrarence e Facilità dell'ecocomia agririo



## STEP 2 BUSINESS-AS-USUAL: RESULT



Thanks to the data collected during the silvicultural actions a value has been calculated for each forest-wood chain indicators. In the current scenario all the wood harvested has been chipped and sold to the District Heating Plant (DHP) of Calenzano, Florence.

| Indicator        | Description                                                                                              | Value                                   |
|------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|
| I <sub>1</sub>   | Annual economic value of wood harvested (€) / surface (ha)                                               | 421,3 € ha <sup>-1</sup>                |
| $\overline{I_2}$ | CO <sub>2</sub> emissions during thinning and harvesting operations (kg <sub>CO2</sub> /m <sup>3</sup> ) | 7,8 kgCO <sub>2</sub> m <sup>-3</sup>   |
| $\overline{I_3}$ | Life span of the wood products (years)                                                                   | 0,5 years                               |
| $I_4$            | Potential earning – effective earning /potential earningIncremento valore (%)                            | 25,3 %                                  |
| $\overline{I_5}$ | Avoided emissions using wood for energy purpose (kgCO <sub>2</sub> /MWh)                                 | 626 kgCO <sub>2</sub> MWh <sup>-1</sup> |
| $I_6$            | Deadwood for energetic purpose (m <sup>3</sup> ) / deadwood in forest (m <sup>3</sup> )                  | 0,37                                    |





# STEP 2 BUSINESS-AS-USUAL: RESULT



Thanks to the data collected during the silvicultural actions a value has been calculated for each forest-wood chain indicators. In the current scenario all the wood harvested has been chipped and sold to the District Heating Plant (DHP) of Calenzano, Florence.

| Indicator  | Description                                                                                              | Value                               |
|------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|
|            |                                                                                                          |                                     |
| $I_1$      | Annual economic value of wood harvested (€) / surface (ha)                                               | 421,3 € ha <sup>-1</sup>            |
| $I_2$      | CO <sub>2</sub> emissions during thinning and harvesting operations (kg <sub>CO2</sub> /m <sup>3</sup> ) | $7.8 \text{ kgCO}_2 \text{ m}^{-3}$ |
| $I_3$      | Life span of the wood products (years)                                                                   | 0.5 years                           |
| ${ m I}_4$ | Potential earning – effective earning /potential earningIncremento valore (%)                            | 25,3 %                              |
| $I_5$      | Avoided emissions using wood for energy purpose (kgCO <sub>2</sub> /M <b>y</b> /h)                       | 626 kgCO <sub>2</sub> MWh-1         |
| $I_6$      | Deadwood for energetic purpose (m <sup>3</sup> ) / deadwood in forest (m <sup>3</sup> )                  | 0,37                                |
|            |                                                                                                          |                                     |

- Wood products value: 421 € per hectare
- 25,3% of the Indicator 5, means that we can work on the wood destination to improve the valorization of the wood harvested.
- 37% of the deadwood of (1-2<sup>th</sup> class) has been collected for energy purpose. The deadwood valorization, is mainly applicable in degraded forest.







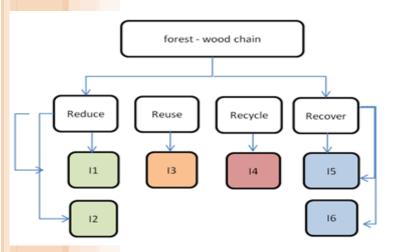
### **SCENARIOS**

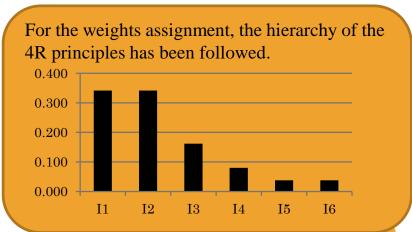


To look for a better management solution 5 different scenarios have been compared:

- A Business as usual (traditional & selective thinning)
- B Traditional thinning ad woodchips production
- C Selective thinning and woodchips production
- D Traditional thinning and wood products valorization (e.g., packaging or environmental engineering poles)
- E Selective thinning and wood products valorization (e.g., packaging or environmental engineering poles)

| Scenario | Thinning        | Timber                   | Wood volume allocation |                   |         |  |
|----------|-----------------|--------------------------|------------------------|-------------------|---------|--|
|          | method          | volume [m <sup>3</sup> ] | Woodchips              | Packaging         | Large   |  |
|          | [T=traditional, |                          | [m <sup>3</sup> ]      | [m <sup>3</sup> ] | poles   |  |
|          | S=selective]    |                          |                        |                   | $[m^3]$ |  |
| A        | T+S             | 1,813                    | 1,813                  | -                 | -       |  |
| В        | T               | 1,454                    | 1,454                  | -                 | -       |  |
| С        | S               | 2,220                    | 2,220                  | -                 | -       |  |
| D        | T               | 1,454                    | 850                    | 535               | 63      |  |
| Е        | S               | 2,220                    | 1,251                  | 604               | 363     |  |





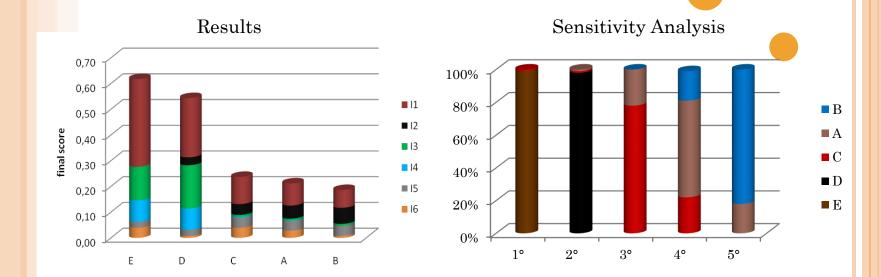

# MCDA ANALYSIS - DEFINITE SOFTWARE

An MCDA analysis has been run among the 5 scenarios by means of the AHP approach. The weights of the indicators have been assigned by means of the pairwise comparison.





Input matrix


| Scenario | <b>I</b> <sub>1</sub> [€ ha <sup>-1</sup> ] | $I_2 [kg_{CO2}m^{-3}]$ | I <sub>3</sub> [y] | I <sub>4</sub> [%] | $I_5 [kg_{CO2} m^{-3}]$ | I <sub>6</sub> [m <sup>3</sup> m <sup>-3</sup> ] |
|----------|---------------------------------------------|------------------------|--------------------|--------------------|-------------------------|--------------------------------------------------|
| A        | 421.3                                       | 7.8                    | 0.5                | 25                 | -626.6                  | 0.37                                             |
| В        | 337.8                                       | 7.5                    | 0.5                | 26                 | -626.9                  | 0.10                                             |
| С        | 515.8                                       | 8.0                    | 0.5                | 25                 | -626.4                  | 0.50                                             |
| D        | 1,124.8                                     | 8.3                    | 11.6               | 0                  | -373.2                  | 0.10                                             |
| Е        | 1,667.3                                     | 8.4                    | 8.9                | 0                  | -378.7                  | 0.50                                             |





## RESULTS

- The best management solution is the scenario E: selective thinning with wood products valorization. In these scenario increase the earning from the wood sold (I1), the span life of the wood products (I3);
- The scenario D follows the scenario E. The wood valorization has a key role in the forest wood chain.
- o If the wood is devote only to woodchips production scenarios A,B,C, the scenario C is the favored one: with selective thinning higher volume of wood harvested are collected







## OUTLOOKS AND CONCLUSIONS



- ➤ Two thinning methods have been applied in a degraded forests data on timber/deadwood volume, costs and time of felling and chipping, have been collected
- > Six forest indicators have been defined according to the circular bioeconomy principles
- > Five different forest management scenarios have been compared by means of MCDA approach
  - ✓With the selective thinning higher timber volume have been collected, with higher timber quality; If the aim is the woodchips production the selective thinning must be preferred rather then traditional thinning;
  - ✓ By the MCDA the preferred scenario for the forest management is the selective method with wood valorization increasing of 1200 €/ha;
  - ✓ The forest indicators could became useful tool to evaluate the forest status, to
    point out the aspect that can be improved and to compare different forest
    management options;
  - ✓ According to the circular bioeconomy principles, the "cascade" approach wins. The wood valorization is the key variable to increase the value of the peri-urban forest.



