

SOS 4LIFE

World Forum on Urban Forests Mantova 2018

Ecosystem services of urban soils

C. Calzolari, S. Baronti, M. Lanini, A. Maienza, M. Nardino, F. Ugolini, F. Ungaro CNR IBiMet

P. Tarocco, N. Marchi SGSS Regione Emilia-Romagna

WFUF – World Forum on Urban Soils Mantova, November 29th 2018

IFE15 ENV/IT/000225

1. Introduction

□ Ecosystem services (ESs) research is currently focusing more and more on soils but few studies have focussed on the **linkages between soil properties and ES provision** and the use of soil data is often minimal (Adhikari & Hartemink, 2016)

□ Despite the centrality of its role in ESs supply, soil is still an **overlooked component in ESs** studies as well as in policy level decisions (Hewit et al., 2015)

□ Many authors emphasized the need for soil ESs assessment and for promoting **soil-ecosystem linkage** in the development of land resources policy and management (Bouma et al., 2015; Mc Bratney et al, 2014; Lal, 2013; Robinson et al., 2012)

□ The contribution of urban soils to human well-being in terms of provision of ecosystem services is largely unknown and very rarely accounted for in urban planning to enhance the sustainable development of urban ecosystem (Morel et al., 2014) and, although fundamental, soil is considered a secondary compartment beyond vegetation.

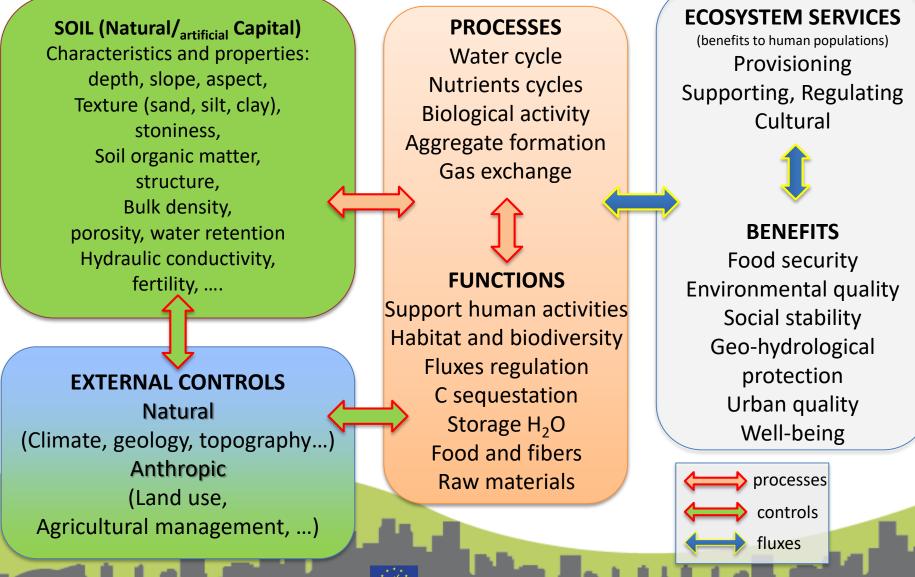
2. Introduction

□ Among the goals of the EU funded LIFE project SOS4LIFE is the development of methods for the assessment and mapping of soil ecosystem services in urban and periurban areas and the impact of soil sealing on the provision of ecosystem services.

□ To this aim we surveyed, sampled and analyzed the urban and periurban soils of the municipality of Carpi (Emilia Romagna, NE Italy) and applied a methodology developed at regional scale (Calzolari et al., 2016) and tailored to tackle the observed variability in soil properties to estimate and map a set of indicators to describe the provision of a number of soil based ecosystem services.

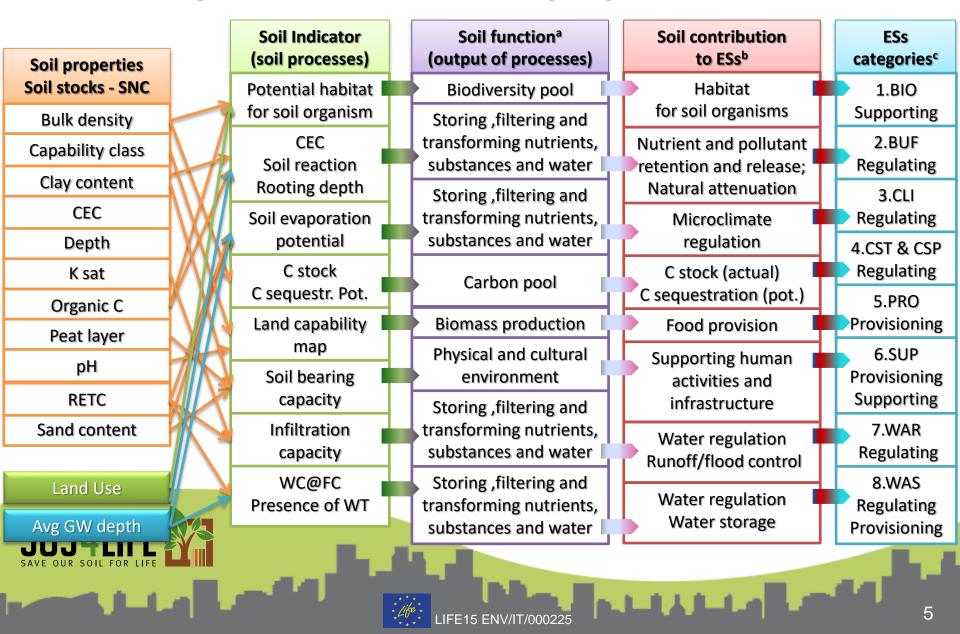
Sampled soils include:

soils that are composed of a <u>mixture of materials</u> differing from those in adjacent agricultural or forest areas, and that may present a surface layer >50 cm, highly transformed through mixing, importing, and exporting material, and by contamination;
 soils in <u>parks and gardens</u> that are closer to agricultural soils but have different composition, use, and management than agricultural soils;


and **(3)** soils that result from various <u>construction activities in urban areas</u> and that are often partially or completely <u>sealed</u>.

Consiglio Nazionale delle Ricerche

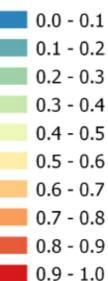
3. Soil Ecosystem Services: conceptual framework



E15 ENV/IT/000225

3. Soil Ecosystem Services: from properties to ESs

Consiglio Nazionale del

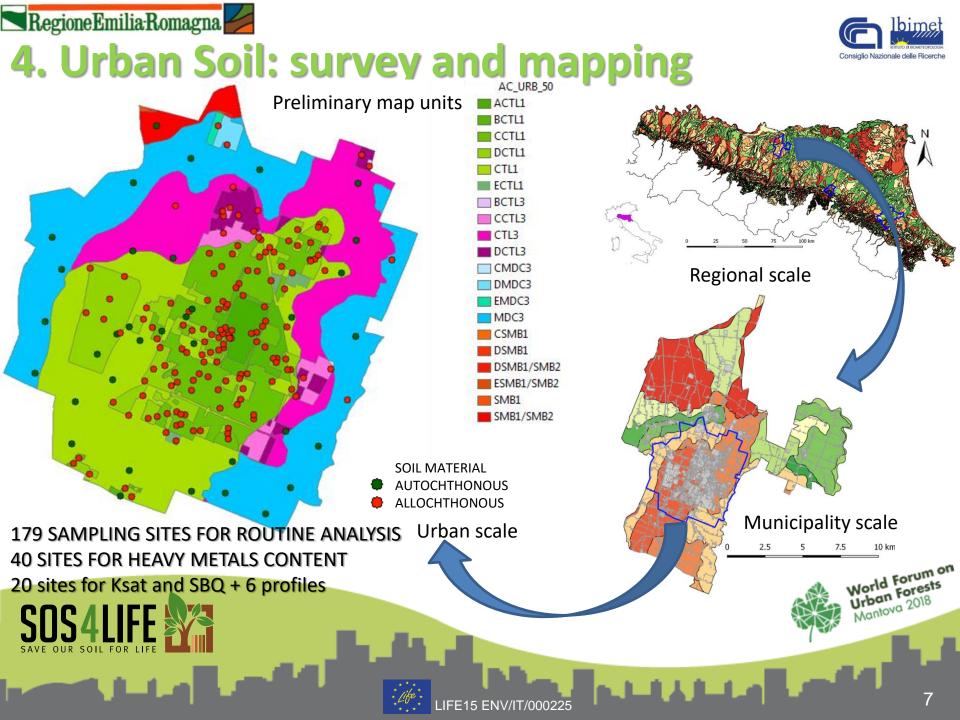

3. Soil Ecosystem Services: ESs Indicators

 \square WAS₀₋₁ = (WC_{FC} * 1-sk)₀₋₁ for water table deeper than 100 cm, and $WAS_{0-1} = (WC_{FC} * 1-sk) WT/100$ for water table within the first 100 cm

- **BIO**₀₋₁ = (Log OC₀₋₁-BD₀₋₁) QBS_{ar 0-1}
- $WAR_{0-1} = \log Ksat_{0-1} PSIe_{0-1}$
- **CLI**₀₋₁ = log AWC₀₋₁ + WT₀₋₁

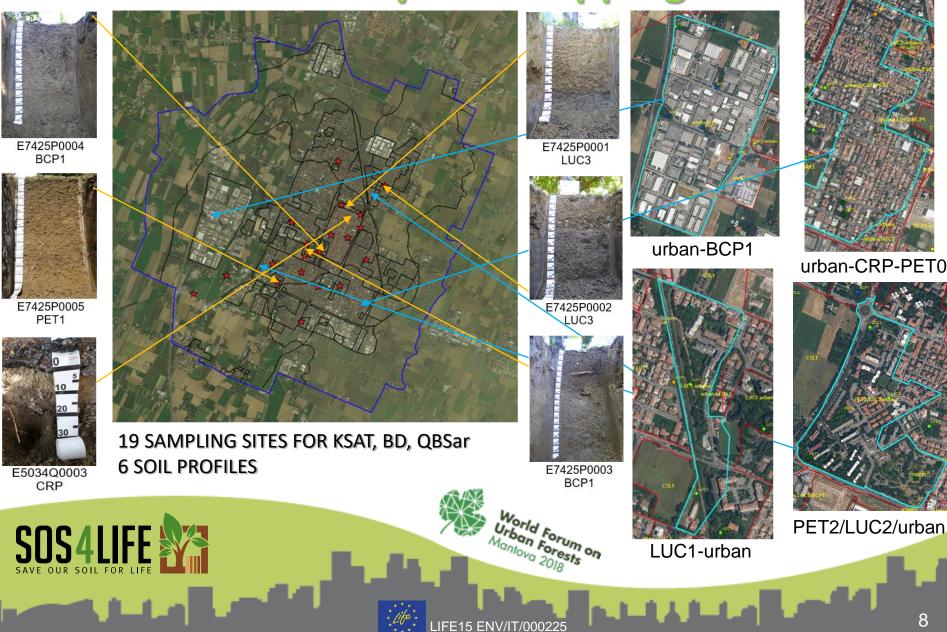
Interval normalization Xi' = Xi–Xmin/Xmax–Xmin

where Xi' is the standardised [0-1] value, Xi is the actual value, Xmin and Xmax are the maximum and the minimum respectively of each considered variable in the dataset. The formula gives high priority (i.e. values close to 1) to higher values of the considered \Box CST₀₋₁ = log (SOC*BD*0.3*(1-sk)) ordicator; the lowest value, 0, does not indicate that the function is not provided, but that it is the lowest in the considered area.



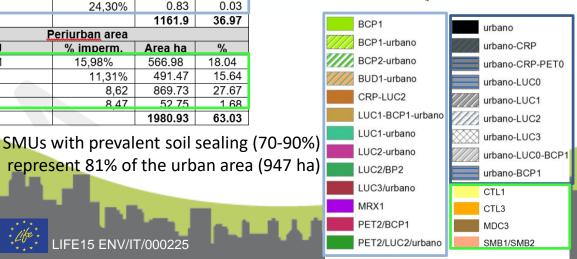
D $BUF_{0-1} = Log CSC(pH; sk)_{0-1}$ with pH<6.5 reduction by 0.25 or 0.5 depending on CSC and skel>30% by 0.25 for water table deeper than 100 cm, and $BUF_{0-1} = Log CSC(pH; sk)_{0-1} * WT/100$ in case of occurrence of a shallow water table within the first 100 cm of soil depth,

being WT the average water table depth (cm).



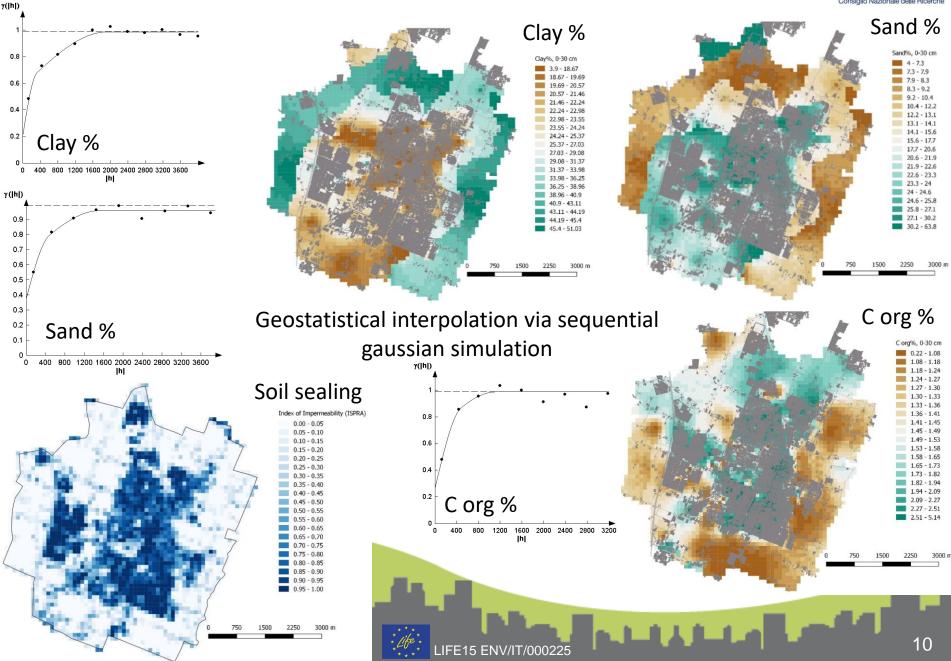
Regione Emilia Romagna 4. Urban Soil: survey and mapping

🚬 RegioneEmilia:Romagna 🌽 4. Urban Soil: survey and mapping

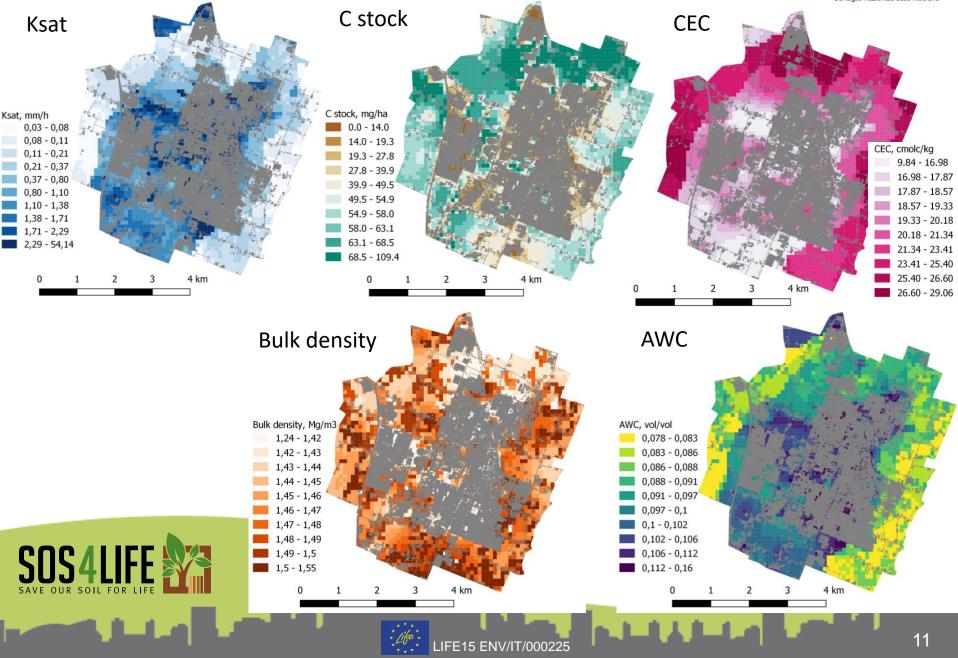

Í.		Tot ha	Built up	Soil ha	Soil %
T	Urban (37%)	1162	877	284	24.5
	Periurban (63%)	1981	226	1755	88.6

LIFE15 ENV/IT/000225

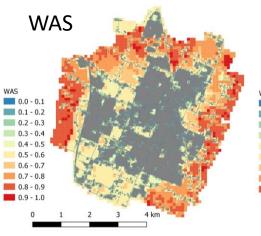
Impermeabilizzazione 🔲 limite_carta suoli urbani 0.000 - 0.100 0.100 - 0.200 0.300 - 0.400 0.400 - 0.500 0.500 - 0.6000.600 - 0.700 0.700 - 0.800 0.800 - 0.900 0.900 - 0.939 3 km

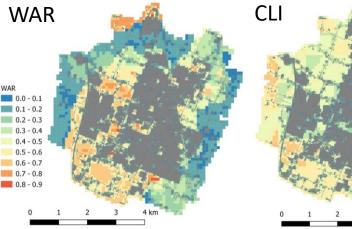

	Urban area			Urban area					
SMU	% imperm.	Area ha	%	SMU	% imperm.	Area ha	%		
Urban	93,88	118.90	3.78	PET2/BCP1	13,16%	12.01	0.38		
Urban-BCP1	81,82%	139.76	4.45	PET2/LUC2/Urban	50,38%	33.08	1.05		
Urban-CRP	82,09%	67.19	2.14	MRX1	55,59	5.52	0.18		
Urban-CRP-PET0	90,26%	139.34	4.43	BCP1	8,13%	2.55	0.08		
Urban-LUC0	84,51%	134.42	4.28	BCP1-Urban	34,22%	21.27	0.68		
Urban-LUC0-BCP1	71,49%	37.38	1.19	BCP2-Urban	10,37%	28.06	0.89		
Urban-LUC1	79,97%	168.25	5.35	BUD1-Urban	24,30%	0.83	0.03		
Urban-LUC2	85,08%	107.07	3.41			1161.9	36.97		
Urban-I UC3	71 17%	34 65	1 10	Periurban area					
CRP-LUC2	34,27%	7.94	0.25	SMU	% imperm.	Area ha	%		
LUC1-BCP1-Urban	32,00%	24.11	0.77	CTL1	15,98%	566.98	18.04		
LUC1-Urban	44,68%	29.02	0.92	CTL3	11,31%	491.47	15.64		
LUC2/BP2	13,08%	10.13	0.32	MDC3	8,62	869.73	27.67		
LUC2-Urban	54,20%	32.36	1.03	SMB1/SMB2	8,47	52 75	1 68		
LUC3/Urban	62,92	8.06	0.26			1980.93	63.03		

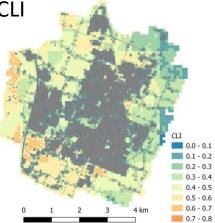
SOS 4LIFE

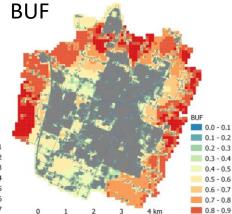

RegioneEmiliaRomagna 5. Soil properties & functions

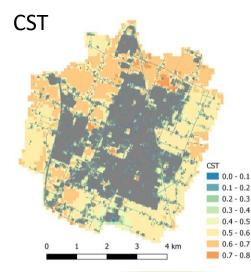
RegioneEmiliaRomagna 5. Soil properties & functions

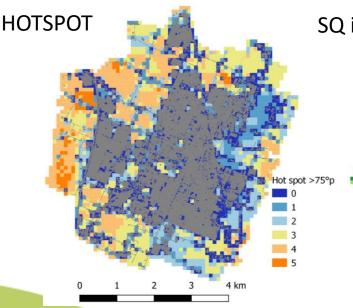


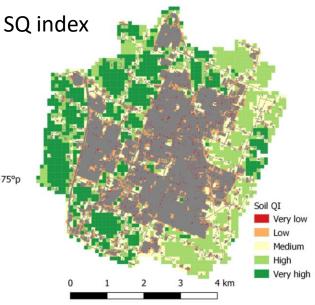





6. Soil Ecosystem Services



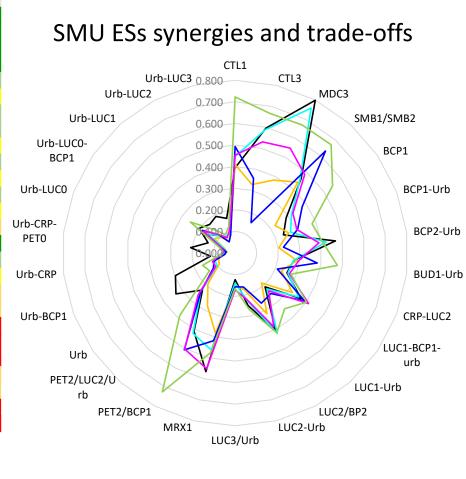




LIFE15 ENV/IT/000225

المراجع فالملح

12


0.9 - 1.0

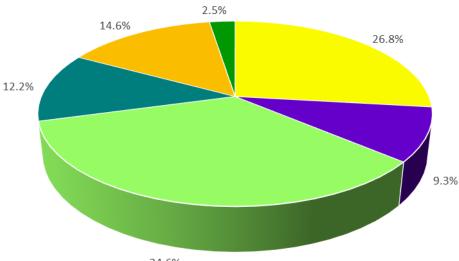
6. Soil Ecosystem Services

Area	SMU	ha	BUF	CLI	WAS	WAR	CTS	HotSpot	HotS /ha	IQ
Cropland	CTL1	567	0.395	0.410	0.447	0.493	0.453	449	0.79	2.20
Cropland	CTL3	477	0.596	0.327	0.589	0.356	0.531	330	0.69	2.40
Cropland	MDC3	867	0.799	0.381	0.758	0.159	0.549	800	0.92	2.65
Cropland	SMB1/SMB2	53	0.462	0.439	0.452	0.632	0.486	48	0.91	2.47
Urban <60%	BCP1	3	0.287	0.225	0.318	0.377	0.325	3	1.18	1.53
Urban <60%	BCP1-Urb	21	0.239	0.265	0.274	0.310	0.306	10	0.47	1.39
Urban <60%	BCP2-Urb	28	0.468	0.204	0.424	0.226	0.391	9	0.32	1.71
Urban <60%	BUD1-Urb	1	0.275	0.289	0.274	0.383	0.296	1	1.21	1.52
Urban <60%	CRP-LUC2	8	0.257	0.230	0.262	0.210	0.270	1	0.13	1.23
Urban <60%	LUC1-BCP1-urb	24	0.371	0.322	0.358	0.389	0.413	16	0.66	1.85
Urban <60%	LUC1-Urb	29	0.209	0.185	0.222	0.250	0.234	2	0.07	1.10
Urban <60%	LUC2/BP2	10	0.404	0.318	0.421	0.262	0.385	3	0.30	1.79
Urban <60%	LUC2-Urb	32	0.250	0.174	0.225	0.162	0.220	3	0.09	1.03
Urban <60%	LUC3/Urb	8	0.124	0.151	0.139	0.156	0.171	0	0.00	0.74
Urban <60%	MRX1	6	0.566	0.382	0.463	0.418	0.552	2	0.36	2.38
Urban <60%	PET2/BCP1	12	0.410	0.276	0.420	0.507	0.502	9	0.75	2.11
Urban <60%	PET2/LUC2/Urb	33	0.229	0.190	0.241	0.240	0.258	6	0.18	1.16
Urban >60%	Urb	119	0.333	0.089	0.102	0.122	0.110	34	0.29	0.76
Urban >60%	Urb-BCP1	140	0.295	0.082	0.099	0.105	0.111	12	0.09	0.69
Urban >60%	Urb-CRP	67	0.115	0.057	0.071	0.048	0.071	0	0.00	0.36
Urban >60%	Urb-CRP-PET0	139	0.208	0.036	0.041	0.042	0.050	1	0.01	0.38
Urban >60%	Urb-LUC0	134	0.134	0.049	0.054	0.066	0.069	4	0.03	0.37
Urban >60%	Urb-LUCO-BCP1	37	0.202	0.118	0.149	0.184	0.178	6	0.16	0.83
Urban >60%	Urb-LUC1	168	0.177	0.096	0.105	0.114	0.114	6	0.04	0.61
Urban >60%	Urb-LUC2	121	0.191	0.060	0.087	0.059	0.080	4	0.03	0.48
Urban >60%	Urb-LUC3	38	0.165	0.093	0.097	0.088	0.109	2	0.05	0.55

🔁 Regione Emilia Romagna 🥢

Contribution of each SMU to ESs provision

Consiglio Nazionale delle Ricerch



🚬 RegioneEmilia Romagna 🥢

SOS 4LIFE

6. Soil Ecosystem Services

- 34.6%
- Sports and leisure facilities
- Public green

_IFE15 ENV/IT/000225

- Roadside and Railwayside green
- Environmental compensation areas
- Public green, schools
- Villas with park

Y							
in the	Green areas	Cstock	Area	Cstock	C stock/ab	CO2eq	CO2 eq /ab
	C stock 0-30 cm	Mg	На	Mg/ha	Mg	Mg	Mg
÷	Sports and leisure facilities	4041	51.2	78.9	0.06	14819	0.21
r.	Environmental compensation areas	1407	16.9	83.2	0.02	5158	0.07
F	Public green	5212	64.7	80.6	0.07	19112	0.27
	Public green, schools	1832	22.6	81.2	0.03	6719	0.09
	Roadside and Railwayside green	2195	31.5	69.6	0.03	8049	0.11
	Villas with park	379	6.4	59.4	0.01	1388	0.02
	Total	15067	193.2	78.0	0.21	55246	0.78

Cropland avg = $43.4 \text{ Mg C ha}^{-1}$

14

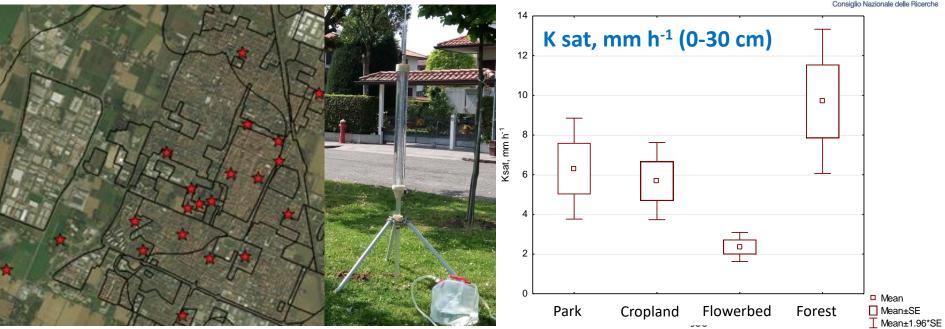
🚬 RegioneEmilia:Romagna 🌽

SOS 4LIFE

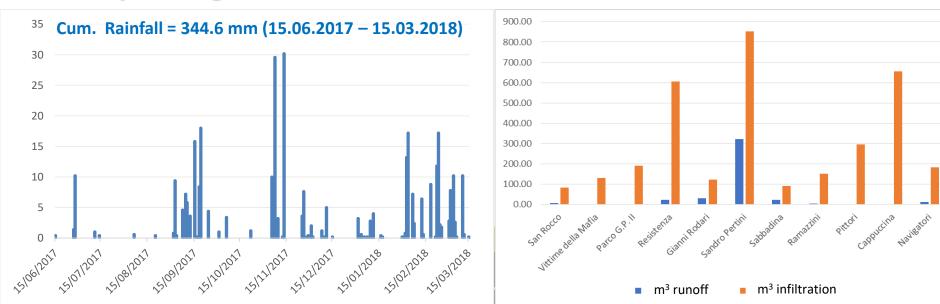
6. Soil Ecosystem Services

- Sports and leisure facilities
- Public green

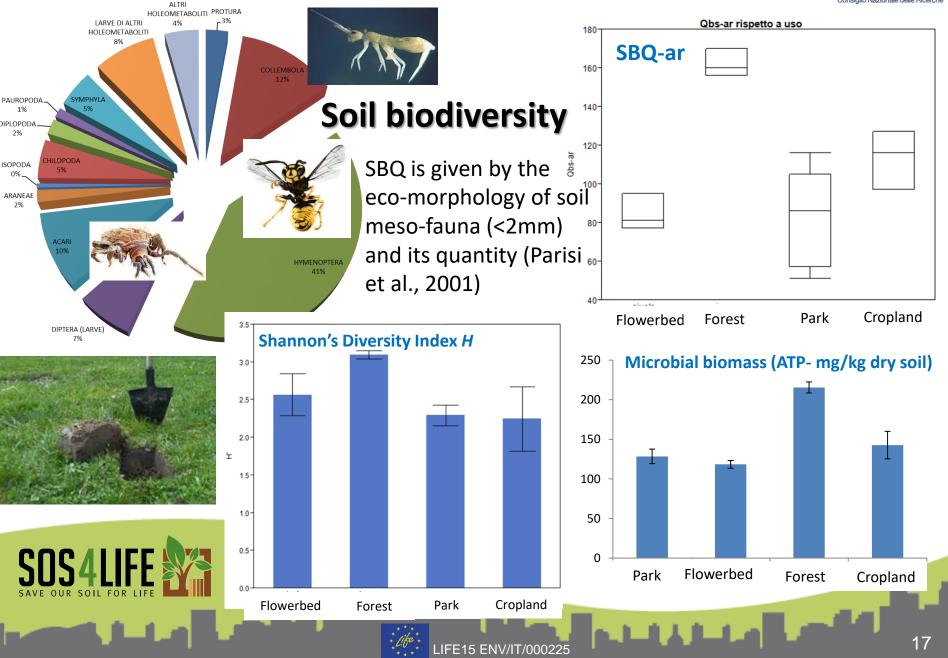
LIFE15 ENV/IT/000225


Roadside and Railwayside green

- Environmental compensation areas
- Public green, schools
- Villas with park

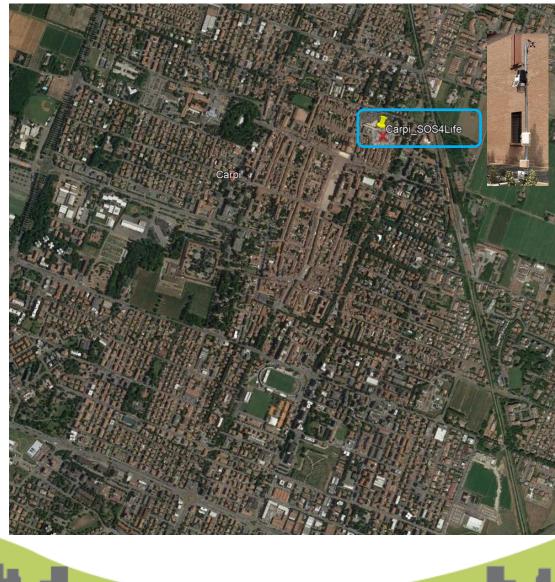

Available water storage capacity	Area Ha	AWC m3	AWC m3/ha	AWC m3/ab	AWC m3/tree	mm/m2
🚰 Sports and leisure facilities	51.2	15488	302.4	0.218	0.456	30.2
Environmental compensation areas	16.9	5324	315.0	0.075	0.157	31.5
Public green	64.7	20024	309.6	0.282	0.589	31.0
Public green, schools	22.6	7124	315.8	0.100	0.210	31.6
Roadside and Railwayside green	31.5	8790	278.9	0.124	0.259	27.9
Villas with park	6.4	1934	303.3	0.027	0.057	30.3
Total	193.2	58682.0	303.7	0.826	1.726	30.4

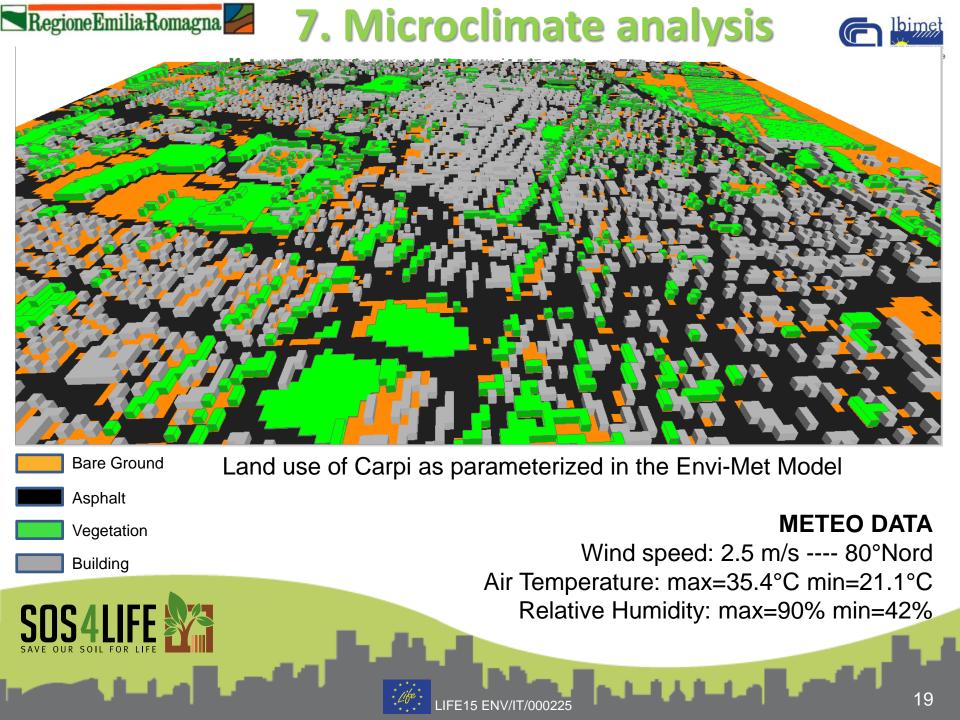
RegioneEmiliaRomagna 6. Soil Ecosystem Services


Water Cycle Regulation Park area = 10 ha Infiltration = 33,574.3 m³ (ca. 90% cum. precip.)

6. Soil Ecosystem Services

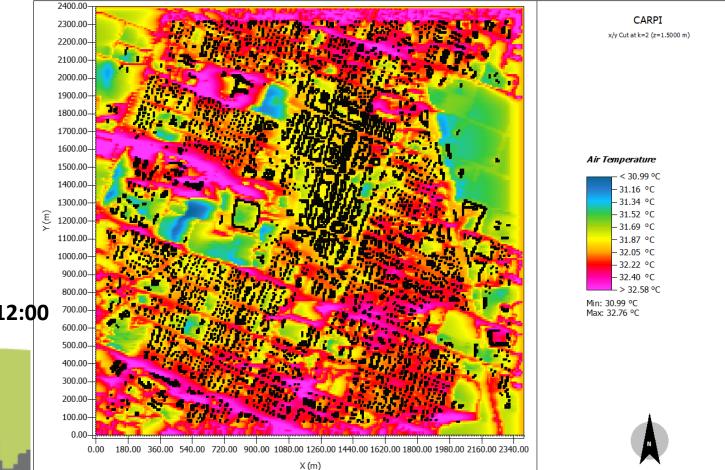
📉 RegioneEmilia:Romagna


SOS 4LIFE


7. Microclimate analysis

The Envi-met microclimatic model was set up for the whole Carpi city in order to understand the urban microclimatology under hot days conditions.

Input data are recorded (every 30 minutes) at the SOS4Life meteo-station in Carpi

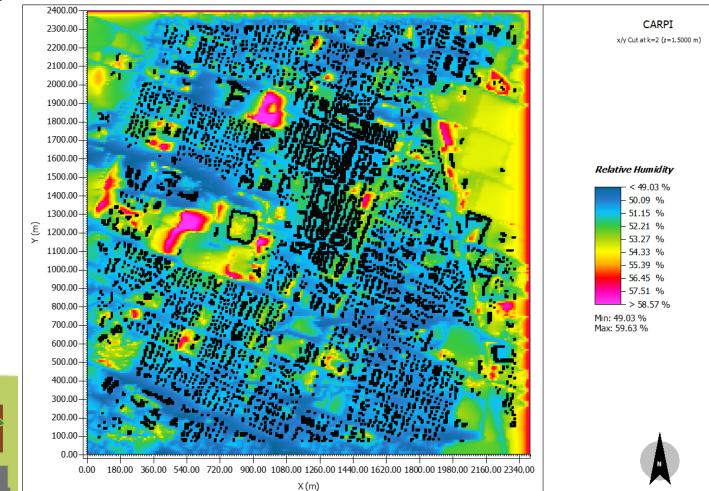


🔁 Regione Emilia-Romagna 🦊

7. Microclimate analysis

Areas with higher surface temperature (fuchsia) are clearly distinguished from those with lower temperature (green/blue). It is clear how parks and vegetated areas in general are a "cold well" for the city and the importance that they have in the microclimatology of the urban environment. The fuchsia zones are the most overheated ones due to the non-permeable surface (mainly asphalt) and from map it is possible to identify priority areas to intervene to mitigate the "heat island" effect.

Air Temperature @ 12:00



7. Microclimate analysis

Vegetated areas are characterised by higher relative humidity and are almost coincident wih parks; the increase in relative humidity results in a lower air temperature for the same areas.

Relative Humidity @12:00

Conclusions. I

The presented methodology

- Allows to assess and compare the impact of soil sealing in term of reduction/loss of the ecosystem services provided by urban soils under different management options;
- Allows to compare the loss of services with the gains resulting from the realization of new infrastructures and services;
- Provides assessment tools to support land planning (i.e. maps) to the aim to reduce/compensate soil sealing taking explicitly into account local land resources and the functions of different soils;
- Highlights the multifunctional role played by soils in the urban environment and the relevance of the services provided to the citizens.

Conclusions. II

□ Urban soils have characteristics and properties similar to those of agricultural soils in the peri-urban areas, and result from less or more intense disturbance of in situ soils with or without addition of soil materials from nearby areas;

□ The degree of disturbance is highly variable and depends from the size of the green areas, their use (vegetation cover) and past/current management; as a consequence, these affect the properties of soils of urban areas and their capacity to sustain the deliver of ESs;

□ The inherent complexity of the urban soil environment requires *ad hoc* survey to properly quantify the contribution of soil ecosistem services and to identify potential disservices due to mis-use/-management;

Sustainable urban environment requires more interactions and cooperation between urban planners and soil/climate/vegetation experts.

www.sos4life.it

EMILIA

ROMAGNA

World Forum on

2424

Urban Forests Mantova 2018

